光阳极表面FeIV=O积累加速复合反应

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingguo Li*, Hang Chen, Siqin Liu, Yu Wang, Wenchao Wan, Yonggui Zhao, Carlos A. Triana, Zihao Xu and Greta R. Patzke*, 
{"title":"光阳极表面FeIV=O积累加速复合反应","authors":"Jingguo Li*,&nbsp;Hang Chen,&nbsp;Siqin Liu,&nbsp;Yu Wang,&nbsp;Wenchao Wan,&nbsp;Yonggui Zhao,&nbsp;Carlos A. Triana,&nbsp;Zihao Xu and Greta R. Patzke*,&nbsp;","doi":"10.1021/jacs.5c02231","DOIUrl":null,"url":null,"abstract":"<p >The observation of third-order water oxidation kinetics by <i>Fe</i><sup><i>IV</i></sup><i>=O</i> accumulation at the semiconductor–electrolyte interface is a milestone for understanding the four-electron transfer reaction mechanism. However, the consequences of such <i>Fe</i><sup><i>IV</i></sup><i>=O</i> accumulation for the associated recombination reaction kinetics at the interface have not been fully explored so far. Here, we observe fast second-order recombination reaction kinetics for <i>Fe</i><sup><i>IV</i></sup><i>=O</i> as the result of its accumulation at the model hematite–electrolyte interface, compared to the first-order recombination reaction kinetics for a lesser amount of available <i>Fe</i><sup><i>IV</i></sup><i>=O</i>. We refer to this phenomenon as “accumulation-accelerated recombination (AAR)” and highlight the adverse role of <i>Fe</i><sup><i>IV</i></sup><i>=O</i> accumulation at the interface. Further, we demonstrate that this fast second-order <i>AAR</i> could be slowed down to first-order kinetics by (i) deprotonation of the metal oxide surface; (ii) evacuating the conduction band electrons; and (iii) partial substitution of <i>Fe</i><sup><i>IV</i></sup><i>=O</i> with less active <i>Co</i><sup><i>IV</i></sup><i>=O</i> species. Such an insight is vital not only for understanding the efficiency loss mechanisms at the semiconductor–electrolyte interface but also for interpreting the interfacial behavior of photovoltaic systems and photocatalysts.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 25","pages":"21492–21500"},"PeriodicalIF":15.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Recombination Reaction through Interfacial FeIV=O Accumulation on Photoanode Surfaces\",\"authors\":\"Jingguo Li*,&nbsp;Hang Chen,&nbsp;Siqin Liu,&nbsp;Yu Wang,&nbsp;Wenchao Wan,&nbsp;Yonggui Zhao,&nbsp;Carlos A. Triana,&nbsp;Zihao Xu and Greta R. Patzke*,&nbsp;\",\"doi\":\"10.1021/jacs.5c02231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The observation of third-order water oxidation kinetics by <i>Fe</i><sup><i>IV</i></sup><i>=O</i> accumulation at the semiconductor–electrolyte interface is a milestone for understanding the four-electron transfer reaction mechanism. However, the consequences of such <i>Fe</i><sup><i>IV</i></sup><i>=O</i> accumulation for the associated recombination reaction kinetics at the interface have not been fully explored so far. Here, we observe fast second-order recombination reaction kinetics for <i>Fe</i><sup><i>IV</i></sup><i>=O</i> as the result of its accumulation at the model hematite–electrolyte interface, compared to the first-order recombination reaction kinetics for a lesser amount of available <i>Fe</i><sup><i>IV</i></sup><i>=O</i>. We refer to this phenomenon as “accumulation-accelerated recombination (AAR)” and highlight the adverse role of <i>Fe</i><sup><i>IV</i></sup><i>=O</i> accumulation at the interface. Further, we demonstrate that this fast second-order <i>AAR</i> could be slowed down to first-order kinetics by (i) deprotonation of the metal oxide surface; (ii) evacuating the conduction band electrons; and (iii) partial substitution of <i>Fe</i><sup><i>IV</i></sup><i>=O</i> with less active <i>Co</i><sup><i>IV</i></sup><i>=O</i> species. Such an insight is vital not only for understanding the efficiency loss mechanisms at the semiconductor–electrolyte interface but also for interpreting the interfacial behavior of photovoltaic systems and photocatalysts.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 25\",\"pages\":\"21492–21500\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c02231\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c02231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过FeIV=O在半导体-电解质界面的积累观察到三阶水氧化动力学是理解四电子转移反应机理的一个里程碑。然而,迄今为止,这种FeIV=O积累对界面处相关重组反应动力学的影响尚未得到充分的探讨。在这里,我们观察到FeIV=O在模型赤铁矿-电解质界面积聚的快速二级重组反应动力学,而较少数量的FeIV=O的一级重组反应动力学。我们将这种现象称为“积累-加速复合(AAR)”,并强调了FeIV=O在界面处积累的不利作用。此外,我们证明了这种快速的二阶反应可以通过(i)金属氧化物表面的去质子化减慢到一级动力学;(ii)疏散导带电子;(3) FeIV=O被活性较低的CoIV=O物种部分取代。这种见解不仅对于理解半导体-电解质界面的效率损失机制,而且对于解释光伏系统和光催化剂的界面行为至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerated Recombination Reaction through Interfacial FeIV=O Accumulation on Photoanode Surfaces

Accelerated Recombination Reaction through Interfacial FeIV=O Accumulation on Photoanode Surfaces

The observation of third-order water oxidation kinetics by FeIV=O accumulation at the semiconductor–electrolyte interface is a milestone for understanding the four-electron transfer reaction mechanism. However, the consequences of such FeIV=O accumulation for the associated recombination reaction kinetics at the interface have not been fully explored so far. Here, we observe fast second-order recombination reaction kinetics for FeIV=O as the result of its accumulation at the model hematite–electrolyte interface, compared to the first-order recombination reaction kinetics for a lesser amount of available FeIV=O. We refer to this phenomenon as “accumulation-accelerated recombination (AAR)” and highlight the adverse role of FeIV=O accumulation at the interface. Further, we demonstrate that this fast second-order AAR could be slowed down to first-order kinetics by (i) deprotonation of the metal oxide surface; (ii) evacuating the conduction band electrons; and (iii) partial substitution of FeIV=O with less active CoIV=O species. Such an insight is vital not only for understanding the efficiency loss mechanisms at the semiconductor–electrolyte interface but also for interpreting the interfacial behavior of photovoltaic systems and photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信