利用RVdriver从RNA变异等位基因频率中鉴定癌症基因

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
James R. M. Black, Thomas P. Jones, Carlos Martínez-Ruiz, Maria Litovchenko, Clare Puttick, Charles Swanton, Nicholas McGranahan
{"title":"利用RVdriver从RNA变异等位基因频率中鉴定癌症基因","authors":"James R. M. Black, Thomas P. Jones, Carlos Martínez-Ruiz, Maria Litovchenko, Clare Puttick, Charles Swanton, Nicholas McGranahan","doi":"10.1186/s13059-025-03557-y","DOIUrl":null,"url":null,"abstract":"Existing approaches to identifying cancer genes rely overwhelmingly on DNA sequencing data. Here, we introduce RVdriver, a computational tool that leverages paired bulk genomic and transcriptomic data to classify RNA variant allele frequencies (VAFs) of non-synonymous mutations relative to a synonymous mutation background. We analyze 7882 paired exomes and transcriptomes from 31 cancer types and identify novel, as well as known, cancer genes, complementing other DNA-based approaches. Furthermore, RNA VAFs of individual mutations are able to distinguish “driver” from “passenger” mutations within established cancer genes. This approach highlights the value of multi-omic approaches for cancer gene discovery.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"22 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer gene identification from RNA variant allelic frequencies using RVdriver\",\"authors\":\"James R. M. Black, Thomas P. Jones, Carlos Martínez-Ruiz, Maria Litovchenko, Clare Puttick, Charles Swanton, Nicholas McGranahan\",\"doi\":\"10.1186/s13059-025-03557-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing approaches to identifying cancer genes rely overwhelmingly on DNA sequencing data. Here, we introduce RVdriver, a computational tool that leverages paired bulk genomic and transcriptomic data to classify RNA variant allele frequencies (VAFs) of non-synonymous mutations relative to a synonymous mutation background. We analyze 7882 paired exomes and transcriptomes from 31 cancer types and identify novel, as well as known, cancer genes, complementing other DNA-based approaches. Furthermore, RNA VAFs of individual mutations are able to distinguish “driver” from “passenger” mutations within established cancer genes. This approach highlights the value of multi-omic approaches for cancer gene discovery.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03557-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03557-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

现有的识别癌症基因的方法主要依赖于DNA测序数据。在这里,我们介绍RVdriver,这是一种计算工具,它利用成对的大量基因组和转录组数据来分类非同义突变相对于同义突变背景的RNA变异等位基因频率(VAFs)。我们分析了来自31种癌症类型的7882对外显子组和转录组,并鉴定了新的和已知的癌症基因,补充了其他基于dna的方法。此外,单个突变的RNA VAFs能够在已建立的癌症基因中区分“驱动”突变和“乘客”突变。这种方法突出了多组学方法在癌症基因发现中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer gene identification from RNA variant allelic frequencies using RVdriver
Existing approaches to identifying cancer genes rely overwhelmingly on DNA sequencing data. Here, we introduce RVdriver, a computational tool that leverages paired bulk genomic and transcriptomic data to classify RNA variant allele frequencies (VAFs) of non-synonymous mutations relative to a synonymous mutation background. We analyze 7882 paired exomes and transcriptomes from 31 cancer types and identify novel, as well as known, cancer genes, complementing other DNA-based approaches. Furthermore, RNA VAFs of individual mutations are able to distinguish “driver” from “passenger” mutations within established cancer genes. This approach highlights the value of multi-omic approaches for cancer gene discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信