多模过程质量预测中回声状态网络的连续半监督学习

IF 9.9 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Chao Yang;Qiang Liu;Yi Liu;Yiu-Ming Cheung
{"title":"多模过程质量预测中回声状态网络的连续半监督学习","authors":"Chao Yang;Qiang Liu;Yi Liu;Yiu-Ming Cheung","doi":"10.1109/TII.2025.3575101","DOIUrl":null,"url":null,"abstract":"The successive switching nature of multimode processes, coupled with data scarcity, challenges traditional quality prediction models. Specifically, the difficulty of simultaneously collecting abundant labeled datasets from all modes forces the model to update its parameters as modes switch. This leads to the forgetting of historical mode knowledge and hinders the aggregation of knowledge, thereby degrading generalization across modes. To this end, we propose a novel continual semisupervised graph echo state network (<inline-formula><tex-math>$\\text{CS}^{2}$</tex-math></inline-formula>GESN). First, a semisupervised graph echo state network (<inline-formula><tex-math>$\\text{S}^{2}$</tex-math></inline-formula>GESN) is designed based on the graph smoothing assumption to extract dynamic information from unlabeled samples within each mode. The <inline-formula><tex-math>$\\text{S}^{2}$</tex-math></inline-formula>GESN model then evolves into a continual model, <inline-formula><tex-math>$\\text{CS}^{2}$</tex-math></inline-formula>GESN, employing an elastic weight consolidation strategy for parameter importance estimation derived from pseudoinverse parameter optimization, facilitating the accumulation of historically learned knowledge. This manner alleviates performance deterioration from data scarcity and information forgetting, and enables more flexible modeling of successive arriving operating modes. The superiority and feasibility of the proposed method are demonstrated through its application to the Tennessee Eastman process and the three-phase flow facility process.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 9","pages":"7209-7219"},"PeriodicalIF":9.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continual Semisupervised Learning of Echo State Network for Quality Prediction of Multimode Processes\",\"authors\":\"Chao Yang;Qiang Liu;Yi Liu;Yiu-Ming Cheung\",\"doi\":\"10.1109/TII.2025.3575101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The successive switching nature of multimode processes, coupled with data scarcity, challenges traditional quality prediction models. Specifically, the difficulty of simultaneously collecting abundant labeled datasets from all modes forces the model to update its parameters as modes switch. This leads to the forgetting of historical mode knowledge and hinders the aggregation of knowledge, thereby degrading generalization across modes. To this end, we propose a novel continual semisupervised graph echo state network (<inline-formula><tex-math>$\\\\text{CS}^{2}$</tex-math></inline-formula>GESN). First, a semisupervised graph echo state network (<inline-formula><tex-math>$\\\\text{S}^{2}$</tex-math></inline-formula>GESN) is designed based on the graph smoothing assumption to extract dynamic information from unlabeled samples within each mode. The <inline-formula><tex-math>$\\\\text{S}^{2}$</tex-math></inline-formula>GESN model then evolves into a continual model, <inline-formula><tex-math>$\\\\text{CS}^{2}$</tex-math></inline-formula>GESN, employing an elastic weight consolidation strategy for parameter importance estimation derived from pseudoinverse parameter optimization, facilitating the accumulation of historically learned knowledge. This manner alleviates performance deterioration from data scarcity and information forgetting, and enables more flexible modeling of successive arriving operating modes. The superiority and feasibility of the proposed method are demonstrated through its application to the Tennessee Eastman process and the three-phase flow facility process.\",\"PeriodicalId\":13301,\"journal\":{\"name\":\"IEEE Transactions on Industrial Informatics\",\"volume\":\"21 9\",\"pages\":\"7209-7219\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11033180/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11033180/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多模式过程的连续切换特性,加上数据的稀缺性,对传统的质量预测模型提出了挑战。具体来说,很难同时从所有模式中收集大量标记数据集,这迫使模型在模式切换时更新其参数。这导致了历史模式知识的遗忘,阻碍了知识的聚集,从而降低了模式间的泛化。为此,我们提出了一种新的连续半监督图回声状态网络($\text{CS}^{2}$GESN)。首先,基于图平滑假设设计半监督图回声状态网络($\text{S}^{2}$GESN),从每个模式内的未标记样本中提取动态信息。然后,$\text{S}^{2}$GESN模型演变为一个连续模型$\text{CS}^{2}$GESN,该模型采用弹性权值整合策略对伪逆参数优化得到的参数重要性估计进行估计,有利于历史学习知识的积累。这种方式减轻了由于数据稀缺和信息遗忘导致的性能下降,并且能够更灵活地对连续到达的操作模式进行建模。通过对田纳西伊士曼工艺和三相流装置工艺的应用,证明了该方法的优越性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continual Semisupervised Learning of Echo State Network for Quality Prediction of Multimode Processes
The successive switching nature of multimode processes, coupled with data scarcity, challenges traditional quality prediction models. Specifically, the difficulty of simultaneously collecting abundant labeled datasets from all modes forces the model to update its parameters as modes switch. This leads to the forgetting of historical mode knowledge and hinders the aggregation of knowledge, thereby degrading generalization across modes. To this end, we propose a novel continual semisupervised graph echo state network ($\text{CS}^{2}$GESN). First, a semisupervised graph echo state network ($\text{S}^{2}$GESN) is designed based on the graph smoothing assumption to extract dynamic information from unlabeled samples within each mode. The $\text{S}^{2}$GESN model then evolves into a continual model, $\text{CS}^{2}$GESN, employing an elastic weight consolidation strategy for parameter importance estimation derived from pseudoinverse parameter optimization, facilitating the accumulation of historically learned knowledge. This manner alleviates performance deterioration from data scarcity and information forgetting, and enables more flexible modeling of successive arriving operating modes. The superiority and feasibility of the proposed method are demonstrated through its application to the Tennessee Eastman process and the three-phase flow facility process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信