{"title":"基于任务增强的视网膜病变元学习分割方法","authors":"Jingtao Wang;Muhammad Mateen;Dehui Xiang;Weifang Zhu;Fei Shi;Jing Huang;Kai Sun;Jun Dai;Jingcheng Xu;Su Zhang;Xinjian Chen","doi":"10.1109/TPAMI.2025.3579271","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) requires large amounts of labeled data, which is extremely time-consuming and labor-intensive to obtain for medical image segmentation tasks. Meta-learning focuses on developing learning strategies that enable quick adaptation to new tasks with limited labeled data. However, rich-class medical image segmentation datasets for constructing meta-learning multi-tasks are currently unavailable. In addition, data collected from various healthcare sites and devices may present significant distribution differences, potentially degrading model’s performance. In this paper, we propose a task augmentation-based meta-learning method for retinal image segmentation (TAMS) to meet labor-intensive annotation demand. A retinal Lesion Simulation Algorithm (LSA) is proposed to automatically generate multi-class retinal disease datasets with pixel-level segmentation labels, such that meta-learning tasks can be augmented without collecting data from various sources. In addition, a novel simulation function library is designed to control generation process and ensure interpretability. Moreover, a generative simulation network (GSNet) with an improved adversarial training strategy is introduced to maintain high-quality representations of complex retinal diseases. TAMS is evaluated on three different OCT and CFP image datasets, and comprehensive experiments have demonstrated that TAMS achieves superior segmentation performance than state-of-the-art models.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"8583-8597"},"PeriodicalIF":18.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task Augmentation-Based Meta-Learning Segmentation Method for Retinopathy\",\"authors\":\"Jingtao Wang;Muhammad Mateen;Dehui Xiang;Weifang Zhu;Fei Shi;Jing Huang;Kai Sun;Jun Dai;Jingcheng Xu;Su Zhang;Xinjian Chen\",\"doi\":\"10.1109/TPAMI.2025.3579271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) requires large amounts of labeled data, which is extremely time-consuming and labor-intensive to obtain for medical image segmentation tasks. Meta-learning focuses on developing learning strategies that enable quick adaptation to new tasks with limited labeled data. However, rich-class medical image segmentation datasets for constructing meta-learning multi-tasks are currently unavailable. In addition, data collected from various healthcare sites and devices may present significant distribution differences, potentially degrading model’s performance. In this paper, we propose a task augmentation-based meta-learning method for retinal image segmentation (TAMS) to meet labor-intensive annotation demand. A retinal Lesion Simulation Algorithm (LSA) is proposed to automatically generate multi-class retinal disease datasets with pixel-level segmentation labels, such that meta-learning tasks can be augmented without collecting data from various sources. In addition, a novel simulation function library is designed to control generation process and ensure interpretability. Moreover, a generative simulation network (GSNet) with an improved adversarial training strategy is introduced to maintain high-quality representations of complex retinal diseases. TAMS is evaluated on three different OCT and CFP image datasets, and comprehensive experiments have demonstrated that TAMS achieves superior segmentation performance than state-of-the-art models.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 10\",\"pages\":\"8583-8597\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11032148/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11032148/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task Augmentation-Based Meta-Learning Segmentation Method for Retinopathy
Deep learning (DL) requires large amounts of labeled data, which is extremely time-consuming and labor-intensive to obtain for medical image segmentation tasks. Meta-learning focuses on developing learning strategies that enable quick adaptation to new tasks with limited labeled data. However, rich-class medical image segmentation datasets for constructing meta-learning multi-tasks are currently unavailable. In addition, data collected from various healthcare sites and devices may present significant distribution differences, potentially degrading model’s performance. In this paper, we propose a task augmentation-based meta-learning method for retinal image segmentation (TAMS) to meet labor-intensive annotation demand. A retinal Lesion Simulation Algorithm (LSA) is proposed to automatically generate multi-class retinal disease datasets with pixel-level segmentation labels, such that meta-learning tasks can be augmented without collecting data from various sources. In addition, a novel simulation function library is designed to control generation process and ensure interpretability. Moreover, a generative simulation network (GSNet) with an improved adversarial training strategy is introduced to maintain high-quality representations of complex retinal diseases. TAMS is evaluated on three different OCT and CFP image datasets, and comprehensive experiments have demonstrated that TAMS achieves superior segmentation performance than state-of-the-art models.