Sanjaya V B D Aththawala Gedara, Surya Teja Penna, Marina Feric
{"title":"膜阻止线粒体凝聚物的粗化。","authors":"Sanjaya V B D Aththawala Gedara, Surya Teja Penna, Marina Feric","doi":"10.1101/2025.06.06.658068","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria contain double membranes that enclose their contents. Within their interior, the mitochondrial genome and its RNA products are condensed into ~100 nm sized (ribo)nucleoprotein complexes. How these endogenous condensates maintain their roughly uniform size and spatial distributions within membranous mitochondria remains unclear. Here, we engineered an optogenetic tool (mt-optoIDR) that allowed for controlled formation of synthetic condensates upon light activation in live mitochondria. Using live cell super-resolution microscopy, we visualized the nucleation of small, yet elongated condensates (mt-opto-condensates), which recapitulated the morphologies of endogenous mitochondrial condensates. We decoupled the contribution of the double membranes from the environment within the matrix by overexpressing the dominant negative mutant of a membrane fusion protein (Drp1K38A). The resulting bulbous mitochondria had significantly more dynamic condensates that coarsened into a single, prominent droplet. These observations inform how mitochondrial membranes can limit the growth and dynamics of the condensates they enclose, without the need of additional regulatory mechanisms.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Membranes arrest the coarsening of mitochondrial condensates.\",\"authors\":\"Sanjaya V B D Aththawala Gedara, Surya Teja Penna, Marina Feric\",\"doi\":\"10.1101/2025.06.06.658068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria contain double membranes that enclose their contents. Within their interior, the mitochondrial genome and its RNA products are condensed into ~100 nm sized (ribo)nucleoprotein complexes. How these endogenous condensates maintain their roughly uniform size and spatial distributions within membranous mitochondria remains unclear. Here, we engineered an optogenetic tool (mt-optoIDR) that allowed for controlled formation of synthetic condensates upon light activation in live mitochondria. Using live cell super-resolution microscopy, we visualized the nucleation of small, yet elongated condensates (mt-opto-condensates), which recapitulated the morphologies of endogenous mitochondrial condensates. We decoupled the contribution of the double membranes from the environment within the matrix by overexpressing the dominant negative mutant of a membrane fusion protein (Drp1K38A). The resulting bulbous mitochondria had significantly more dynamic condensates that coarsened into a single, prominent droplet. These observations inform how mitochondrial membranes can limit the growth and dynamics of the condensates they enclose, without the need of additional regulatory mechanisms.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.06.658068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.06.658068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Membranes arrest the coarsening of mitochondrial condensates.
Mitochondria contain double membranes that enclose their contents. Within their interior, the mitochondrial genome and its RNA products are condensed into ~100 nm sized (ribo)nucleoprotein complexes. How these endogenous condensates maintain their roughly uniform size and spatial distributions within membranous mitochondria remains unclear. Here, we engineered an optogenetic tool (mt-optoIDR) that allowed for controlled formation of synthetic condensates upon light activation in live mitochondria. Using live cell super-resolution microscopy, we visualized the nucleation of small, yet elongated condensates (mt-opto-condensates), which recapitulated the morphologies of endogenous mitochondrial condensates. We decoupled the contribution of the double membranes from the environment within the matrix by overexpressing the dominant negative mutant of a membrane fusion protein (Drp1K38A). The resulting bulbous mitochondria had significantly more dynamic condensates that coarsened into a single, prominent droplet. These observations inform how mitochondrial membranes can limit the growth and dynamics of the condensates they enclose, without the need of additional regulatory mechanisms.