通过聚合RNA-seq和TWAS信号对唐氏综合症合并症的机制见解。

Marc Subirana-Granés, Haoyu Zhang, Prashant Gupta, Milton Pividori
{"title":"通过聚合RNA-seq和TWAS信号对唐氏综合症合并症的机制见解。","authors":"Marc Subirana-Granés, Haoyu Zhang, Prashant Gupta, Milton Pividori","doi":"10.1101/2025.06.05.658129","DOIUrl":null,"url":null,"abstract":"<p><p>Down syndrome (DS) is caused by trisomy of chromosome 21 and is associated with diverse clinical manifestations, yet the molecular pathways linking chromosome-21 dosage effects to DS comorbidities remain poorly defined. Here we address this gap by applying a network-based, integrative framework that combines whole-blood transcriptomic data with gene-trait associations to uncover mechanistic insights into DS-associated conditions. First, we performed matrix factorization using PLIER on Human Trisome Project (HTP) RNA-Seq profiles from 304 trisomy-21 (T21) and 95 euploid (D21) individuals, deriving 156 biologically interpretable gene modules. We then identified 92 modules whose activity differed significantly between T21 and D21 and annotated these with prior-knowledge and KEGG pathways. To connect modules to clinical traits, we integrated PrediXcan-derived TWAS results from the UK Biobank, revealing 25 T21-specific modules with significant gene-trait associations (FDR < 0.1), including modules linked to cardiovascular, hematological, immune, metabolic, and neurological phenotypes relevant to DS. Using HTP clinical records as a replication cohort, 13 of these modules reliably predicted comorbidity status (AUC > 0.65, mAPS > 0.65). Most notably module 37, an interferon-stimulated gene network, whose elevated expression robustly distinguished DS individuals with pulmonary hypertension (AUC = 0.76, mAPS = 0.73). Overall, our study demonstrates that integrating blood-derived gene modules with population-scale genetic data uncovers coherent molecular signatures underlying DS comorbidities, identifies candidate biomarkers and therapeutic targets (e.g., <i>ISG15, IFITs, MX1</i> ), and highlights the power of combining transcriptomic and genetic evidence to elucidate complex disease mechanisms.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157637/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into Down syndrome comorbidities via convergent RNA-seq and TWAS signals.\",\"authors\":\"Marc Subirana-Granés, Haoyu Zhang, Prashant Gupta, Milton Pividori\",\"doi\":\"10.1101/2025.06.05.658129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Down syndrome (DS) is caused by trisomy of chromosome 21 and is associated with diverse clinical manifestations, yet the molecular pathways linking chromosome-21 dosage effects to DS comorbidities remain poorly defined. Here we address this gap by applying a network-based, integrative framework that combines whole-blood transcriptomic data with gene-trait associations to uncover mechanistic insights into DS-associated conditions. First, we performed matrix factorization using PLIER on Human Trisome Project (HTP) RNA-Seq profiles from 304 trisomy-21 (T21) and 95 euploid (D21) individuals, deriving 156 biologically interpretable gene modules. We then identified 92 modules whose activity differed significantly between T21 and D21 and annotated these with prior-knowledge and KEGG pathways. To connect modules to clinical traits, we integrated PrediXcan-derived TWAS results from the UK Biobank, revealing 25 T21-specific modules with significant gene-trait associations (FDR < 0.1), including modules linked to cardiovascular, hematological, immune, metabolic, and neurological phenotypes relevant to DS. Using HTP clinical records as a replication cohort, 13 of these modules reliably predicted comorbidity status (AUC > 0.65, mAPS > 0.65). Most notably module 37, an interferon-stimulated gene network, whose elevated expression robustly distinguished DS individuals with pulmonary hypertension (AUC = 0.76, mAPS = 0.73). Overall, our study demonstrates that integrating blood-derived gene modules with population-scale genetic data uncovers coherent molecular signatures underlying DS comorbidities, identifies candidate biomarkers and therapeutic targets (e.g., <i>ISG15, IFITs, MX1</i> ), and highlights the power of combining transcriptomic and genetic evidence to elucidate complex disease mechanisms.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.05.658129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.05.658129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

唐氏综合征(DS)由21号染色体三体引起,与多种临床表现相关,但21号染色体剂量效应与唐氏综合征合并症之间的分子途径尚不明确。在这里,我们通过应用基于网络的综合框架来解决这一差距,该框架将全血转录组数据与基因性状关联相结合,以揭示ds相关疾病的机制见解。首先,我们使用PLIER对304名21三体(T21)和95名整倍体(D21)个体的人类三体计划(HTP) RNA-Seq图谱进行矩阵分解,得到156个生物学上可解释的基因模块。然后,我们确定了92个在T21和D21之间活性显著不同的模块,并用先验知识和KEGG途径对这些模块进行了注释。为了将模块与临床特征联系起来,我们整合了来自UK Biobank的predixcan衍生的TWAS结果,揭示了25个具有显著基因-性状关联(FDR < 0.1)的t21特异性模块,包括与DS相关的心血管、血液学、免疫、代谢和神经表型相关的模块。使用HTP临床记录作为复制队列,其中13个模块可靠地预测合并症状态(AUC为0.65,mAPS为0.65)。最值得注意的是模块37,一个干扰素刺激的基因网络,其高表达强有力地区分了DS个体与肺动脉高压(AUC = 0.76, mAPS = 0.73)。总的来说,我们的研究表明,将血液来源的基因模块与群体规模的遗传数据相结合,揭示了DS合并症的一致分子特征,确定了候选生物标志物和治疗靶点(例如ISG15, IFITs, MX1),并强调了结合转录组学和遗传证据来阐明复杂疾病机制的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic insights into Down syndrome comorbidities via convergent RNA-seq and TWAS signals.

Down syndrome (DS) is caused by trisomy of chromosome 21 and is associated with diverse clinical manifestations, yet the molecular pathways linking chromosome-21 dosage effects to DS comorbidities remain poorly defined. Here we address this gap by applying a network-based, integrative framework that combines whole-blood transcriptomic data with gene-trait associations to uncover mechanistic insights into DS-associated conditions. First, we performed matrix factorization using PLIER on Human Trisome Project (HTP) RNA-Seq profiles from 304 trisomy-21 (T21) and 95 euploid (D21) individuals, deriving 156 biologically interpretable gene modules. We then identified 92 modules whose activity differed significantly between T21 and D21 and annotated these with prior-knowledge and KEGG pathways. To connect modules to clinical traits, we integrated PrediXcan-derived TWAS results from the UK Biobank, revealing 25 T21-specific modules with significant gene-trait associations (FDR < 0.1), including modules linked to cardiovascular, hematological, immune, metabolic, and neurological phenotypes relevant to DS. Using HTP clinical records as a replication cohort, 13 of these modules reliably predicted comorbidity status (AUC > 0.65, mAPS > 0.65). Most notably module 37, an interferon-stimulated gene network, whose elevated expression robustly distinguished DS individuals with pulmonary hypertension (AUC = 0.76, mAPS = 0.73). Overall, our study demonstrates that integrating blood-derived gene modules with population-scale genetic data uncovers coherent molecular signatures underlying DS comorbidities, identifies candidate biomarkers and therapeutic targets (e.g., ISG15, IFITs, MX1 ), and highlights the power of combining transcriptomic and genetic evidence to elucidate complex disease mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信