{"title":"人类着丝粒染色质相关rna的鉴定。","authors":"Kelsey Fryer, Charles Limouse, Aaron F Straight","doi":"10.1101/2025.06.05.658139","DOIUrl":null,"url":null,"abstract":"<p><p>Centromeres are a specialized chromatin domain that are required for the assembly of the mitotic kinetochore and the accurate segregation of chromosomes. Non-coding RNAs play essential roles in regulating genome organization including at the unique chromatin environment present at human centromeres. We performed Chromatin-Associated RNA sequencing (ChAR-seq) in three different human cell lines to identify and map RNAs associated with centromeric chromatin. Centromere enriched RNAs display distinct contact behaviors across repeat arrays and generally belong to three categories: centromere encoded, nucleolar localized, and highly abundant, broad-binding RNAs. Most centromere encoded RNAs remain locally associated with their transcription locus with the exception of a subset of human satellite RNAs. This work provides a comprehensive identification of centromere bound RNAs that may regulate the organization and activity of the centromere.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of chromatin-associated RNAs at human centromeres.\",\"authors\":\"Kelsey Fryer, Charles Limouse, Aaron F Straight\",\"doi\":\"10.1101/2025.06.05.658139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Centromeres are a specialized chromatin domain that are required for the assembly of the mitotic kinetochore and the accurate segregation of chromosomes. Non-coding RNAs play essential roles in regulating genome organization including at the unique chromatin environment present at human centromeres. We performed Chromatin-Associated RNA sequencing (ChAR-seq) in three different human cell lines to identify and map RNAs associated with centromeric chromatin. Centromere enriched RNAs display distinct contact behaviors across repeat arrays and generally belong to three categories: centromere encoded, nucleolar localized, and highly abundant, broad-binding RNAs. Most centromere encoded RNAs remain locally associated with their transcription locus with the exception of a subset of human satellite RNAs. This work provides a comprehensive identification of centromere bound RNAs that may regulate the organization and activity of the centromere.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.05.658139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.05.658139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of chromatin-associated RNAs at human centromeres.
Centromeres are a specialized chromatin domain that are required for the assembly of the mitotic kinetochore and the accurate segregation of chromosomes. Non-coding RNAs play essential roles in regulating genome organization including at the unique chromatin environment present at human centromeres. We performed Chromatin-Associated RNA sequencing (ChAR-seq) in three different human cell lines to identify and map RNAs associated with centromeric chromatin. Centromere enriched RNAs display distinct contact behaviors across repeat arrays and generally belong to three categories: centromere encoded, nucleolar localized, and highly abundant, broad-binding RNAs. Most centromere encoded RNAs remain locally associated with their transcription locus with the exception of a subset of human satellite RNAs. This work provides a comprehensive identification of centromere bound RNAs that may regulate the organization and activity of the centromere.