肝脏及胰胆道快速MRI技术综述及应用。

IF 0.6
Journal of the Korean Society of Radiology Pub Date : 2025-05-01 Epub Date: 2025-05-19 DOI:10.3348/jksr.2025.0004
Bohyun Kim, So Hyun Park, Moon Hyung Choi
{"title":"肝脏及胰胆道快速MRI技术综述及应用。","authors":"Bohyun Kim, So Hyun Park, Moon Hyung Choi","doi":"10.3348/jksr.2025.0004","DOIUrl":null,"url":null,"abstract":"<p><p>In liver and pancreatobiliary MRI, mitigating respiratory motion-related artifacts has always been a major challenge in image acquisition. Motion reduction by breathing control schemes or scan time acceleration by k-space undersampling are two accessible approaches in clinical imaging. Parallel imaging is an indispensable everyday technique with well-known characteristics, but with drawbacks that limit acceleration factors to ≤4. Compressed sensing exploits the data sparsity of MR images, and pseudorandomly undersamples k-space data to iteratively reconstruct images using sophisticated complex computations within highly accelerated scanning time. Albeit, this is with long reconstruction time and complexity in parameter optimization. Deep learning reconstruction uses pretrained and validated convolutional neural networks to reconstruct undersampled data, with the main tasks being image acceleration, denoising, and superresolution. While promising, deep learning reconstruction requires further testing and practical experience with model stability, generalizability, and output image fidelity.</p>","PeriodicalId":101329,"journal":{"name":"Journal of the Korean Society of Radiology","volume":"86 3","pages":"307-320"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149871/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast MRI Techniques of the Liver and Pancreaticobiliary Tract: Overview and Application.\",\"authors\":\"Bohyun Kim, So Hyun Park, Moon Hyung Choi\",\"doi\":\"10.3348/jksr.2025.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In liver and pancreatobiliary MRI, mitigating respiratory motion-related artifacts has always been a major challenge in image acquisition. Motion reduction by breathing control schemes or scan time acceleration by k-space undersampling are two accessible approaches in clinical imaging. Parallel imaging is an indispensable everyday technique with well-known characteristics, but with drawbacks that limit acceleration factors to ≤4. Compressed sensing exploits the data sparsity of MR images, and pseudorandomly undersamples k-space data to iteratively reconstruct images using sophisticated complex computations within highly accelerated scanning time. Albeit, this is with long reconstruction time and complexity in parameter optimization. Deep learning reconstruction uses pretrained and validated convolutional neural networks to reconstruct undersampled data, with the main tasks being image acceleration, denoising, and superresolution. While promising, deep learning reconstruction requires further testing and practical experience with model stability, generalizability, and output image fidelity.</p>\",\"PeriodicalId\":101329,\"journal\":{\"name\":\"Journal of the Korean Society of Radiology\",\"volume\":\"86 3\",\"pages\":\"307-320\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3348/jksr.2025.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3348/jksr.2025.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在肝脏和胰胆管MRI中,减轻呼吸运动相关的伪影一直是图像采集的主要挑战。通过呼吸控制方案减少运动或通过k空间欠采样加速扫描时间是临床成像中两种可行的方法。并行成像是一项不可或缺的日常技术,具有众所周知的特点,但其缺点是将加速度因子限制在≤4。压缩感知利用MR图像的数据稀疏性和伪随机欠采样k空间数据,在高度加速的扫描时间内使用复杂的复杂计算迭代重建图像。但该方法重构时间长,参数优化复杂。深度学习重建使用预训练和验证的卷积神经网络来重建欠采样数据,主要任务是图像加速,去噪和超分辨率。虽然有希望,但深度学习重建需要进一步的测试和实践经验,包括模型稳定性、泛化性和输出图像保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast MRI Techniques of the Liver and Pancreaticobiliary Tract: Overview and Application.

In liver and pancreatobiliary MRI, mitigating respiratory motion-related artifacts has always been a major challenge in image acquisition. Motion reduction by breathing control schemes or scan time acceleration by k-space undersampling are two accessible approaches in clinical imaging. Parallel imaging is an indispensable everyday technique with well-known characteristics, but with drawbacks that limit acceleration factors to ≤4. Compressed sensing exploits the data sparsity of MR images, and pseudorandomly undersamples k-space data to iteratively reconstruct images using sophisticated complex computations within highly accelerated scanning time. Albeit, this is with long reconstruction time and complexity in parameter optimization. Deep learning reconstruction uses pretrained and validated convolutional neural networks to reconstruct undersampled data, with the main tasks being image acceleration, denoising, and superresolution. While promising, deep learning reconstruction requires further testing and practical experience with model stability, generalizability, and output image fidelity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信