具有Sinkhorn散度的修正Logistic回归模型用于阿尔茨海默病分类。

Qipeng Zhan, Zhuoping Zhou, Zixuan Wen, Zexuan Wang, Boning Tong, Heng Huang, Andrew J Saykin, Paul M Thompson, Christos Davatzikos, Li Shen
{"title":"具有Sinkhorn散度的修正Logistic回归模型用于阿尔茨海默病分类。","authors":"Qipeng Zhan, Zhuoping Zhou, Zixuan Wen, Zexuan Wang, Boning Tong, Heng Huang, Andrew J Saykin, Paul M Thompson, Christos Davatzikos, Li Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Logistic regression is a widely used model in machine learning, particularly as a baseline for binary classification tasks due to its simplicity, effectiveness, and interpretability. It is especially powerful when dealing with categorical features. Despite its advantages, standard logistic regression fails to capture the distributional and geometric structure of data, especially when features are derived from structured spaces like brain imaging. For instance, in Voxel-Based Morphometry (VBM), measurements from distinct brain regions follow a clear spatial organization, which standard logistic regression cannot fully leverage. In this paper, we propose Sinkhorn Logistic Regression (SLR), a variant of logistic regression that incorporates the Sinkhorn divergence as a loss function. This adaptation enables the model to leverage geometric information about the data distribution, enhancing its performance on structured datasets.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"634-643"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150743/pdf/","citationCount":"0","resultStr":"{\"title\":\"SLR: A Modified Logistic Regression Model with Sinkhorn Divergence for Alzheimer's Disease Classification.\",\"authors\":\"Qipeng Zhan, Zhuoping Zhou, Zixuan Wen, Zexuan Wang, Boning Tong, Heng Huang, Andrew J Saykin, Paul M Thompson, Christos Davatzikos, Li Shen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Logistic regression is a widely used model in machine learning, particularly as a baseline for binary classification tasks due to its simplicity, effectiveness, and interpretability. It is especially powerful when dealing with categorical features. Despite its advantages, standard logistic regression fails to capture the distributional and geometric structure of data, especially when features are derived from structured spaces like brain imaging. For instance, in Voxel-Based Morphometry (VBM), measurements from distinct brain regions follow a clear spatial organization, which standard logistic regression cannot fully leverage. In this paper, we propose Sinkhorn Logistic Regression (SLR), a variant of logistic regression that incorporates the Sinkhorn divergence as a loss function. This adaptation enables the model to leverage geometric information about the data distribution, enhancing its performance on structured datasets.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"634-643\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

逻辑回归是机器学习中广泛使用的模型,由于其简单,有效和可解释性,特别是作为二元分类任务的基线。它在处理分类特征时尤其强大。尽管标准逻辑回归具有优势,但它无法捕捉数据的分布和几何结构,特别是当特征来自结构化空间(如脑成像)时。例如,在基于体素的形态测量(VBM)中,来自不同大脑区域的测量遵循一个清晰的空间组织,这是标准逻辑回归无法充分利用的。在本文中,我们提出了Sinkhorn逻辑回归(SLR),这是逻辑回归的一种变体,它将Sinkhorn散度作为损失函数。这种适应使模型能够利用有关数据分布的几何信息,增强其在结构化数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLR: A Modified Logistic Regression Model with Sinkhorn Divergence for Alzheimer's Disease Classification.

Logistic regression is a widely used model in machine learning, particularly as a baseline for binary classification tasks due to its simplicity, effectiveness, and interpretability. It is especially powerful when dealing with categorical features. Despite its advantages, standard logistic regression fails to capture the distributional and geometric structure of data, especially when features are derived from structured spaces like brain imaging. For instance, in Voxel-Based Morphometry (VBM), measurements from distinct brain regions follow a clear spatial organization, which standard logistic regression cannot fully leverage. In this paper, we propose Sinkhorn Logistic Regression (SLR), a variant of logistic regression that incorporates the Sinkhorn divergence as a loss function. This adaptation enables the model to leverage geometric information about the data distribution, enhancing its performance on structured datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信