Daniel Paredes, Sankalp Talankar, Cheng Peng, Patrick Balian, Motomoti Lewis, Shunhun Yan, Wen-Shan Tsai PharmD, Ching-Yuan Chang, Debbie L Wilson, Wei-Hsuan Lo-Ciganic, Yonghui Wu
{"title":"用大语言模型从临床叙述中识别阿片类药物过量和阿片类药物使用障碍及其相关信息","authors":"Daniel Paredes, Sankalp Talankar, Cheng Peng, Patrick Balian, Motomoti Lewis, Shunhun Yan, Wen-Shan Tsai PharmD, Ching-Yuan Chang, Debbie L Wilson, Wei-Hsuan Lo-Ciganic, Yonghui Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Opioid overdose and opioid use disorder (OUD) remain a growing public health issue in the United States, affecting 6.1 million individuals in 2022, more than doubling the 2.5 million from 2021. Accurately identifying the opioid overdose and OUD related information is critical to study the outcomes and develop interventions. This study aims to identify opioid overdose and OUD mentions and their related information from clinical narratives. We compared encoder-based large language models (LLMs) and decoder-based generative LLMs in extracting nine crucial concepts related with opioid overdose and OUD including problematic opioid use. Through a cost-effective p-tuning algorithm, our decoder-based generative LLM, GatorTronGPT, achieved the best strict/lenient F1-score of 0.8637, and 0.9057, demonstrating the efficient of using generative LLMs for opioid overdose/OUD related information extraction. This study provided a tool to systematically extract opioid overdose, OUD, and their related information to facilitate opioid-related studies using clinical narratives.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"414-421"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150707/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying Opioid Overdose and Opioid Use Disorder and Related Information from Clinical Narratives Using Large Language Models.\",\"authors\":\"Daniel Paredes, Sankalp Talankar, Cheng Peng, Patrick Balian, Motomoti Lewis, Shunhun Yan, Wen-Shan Tsai PharmD, Ching-Yuan Chang, Debbie L Wilson, Wei-Hsuan Lo-Ciganic, Yonghui Wu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Opioid overdose and opioid use disorder (OUD) remain a growing public health issue in the United States, affecting 6.1 million individuals in 2022, more than doubling the 2.5 million from 2021. Accurately identifying the opioid overdose and OUD related information is critical to study the outcomes and develop interventions. This study aims to identify opioid overdose and OUD mentions and their related information from clinical narratives. We compared encoder-based large language models (LLMs) and decoder-based generative LLMs in extracting nine crucial concepts related with opioid overdose and OUD including problematic opioid use. Through a cost-effective p-tuning algorithm, our decoder-based generative LLM, GatorTronGPT, achieved the best strict/lenient F1-score of 0.8637, and 0.9057, demonstrating the efficient of using generative LLMs for opioid overdose/OUD related information extraction. This study provided a tool to systematically extract opioid overdose, OUD, and their related information to facilitate opioid-related studies using clinical narratives.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"414-421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying Opioid Overdose and Opioid Use Disorder and Related Information from Clinical Narratives Using Large Language Models.
Opioid overdose and opioid use disorder (OUD) remain a growing public health issue in the United States, affecting 6.1 million individuals in 2022, more than doubling the 2.5 million from 2021. Accurately identifying the opioid overdose and OUD related information is critical to study the outcomes and develop interventions. This study aims to identify opioid overdose and OUD mentions and their related information from clinical narratives. We compared encoder-based large language models (LLMs) and decoder-based generative LLMs in extracting nine crucial concepts related with opioid overdose and OUD including problematic opioid use. Through a cost-effective p-tuning algorithm, our decoder-based generative LLM, GatorTronGPT, achieved the best strict/lenient F1-score of 0.8637, and 0.9057, demonstrating the efficient of using generative LLMs for opioid overdose/OUD related information extraction. This study provided a tool to systematically extract opioid overdose, OUD, and their related information to facilitate opioid-related studies using clinical narratives.