在新的专科转诊中使用GPT-4自动预诊的可行性。

April S Liang, Juan M Banda, Thomas Savage, Abby Pandya, Rebecca Carey, Uchechukwu C Megwalu, Michael T Chang, Dev Dash, Conor K Corbin, Aditya Sharma, Rahul Thapa, Nikesh Kotecha, Nigam H Shah, Jennifer Y Lee, Jonathan H Chen
{"title":"在新的专科转诊中使用GPT-4自动预诊的可行性。","authors":"April S Liang, Juan M Banda, Thomas Savage, Abby Pandya, Rebecca Carey, Uchechukwu C Megwalu, Michael T Chang, Dev Dash, Conor K Corbin, Aditya Sharma, Rahul Thapa, Nikesh Kotecha, Nigam H Shah, Jennifer Y Lee, Jonathan H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the feasibility of using GPT-4 to automate precharting for specialty referrals, focusing on new patients referred to an otolaryngology clinic for nasal congestion. We describe the design decisions and strategies tested in creating this precharting utility, including methods for prompt design and token limit handling. Through iterative testing and building, our tool achieved 95.0% agreement with physician consensus in a small retrospective test sample. Results from a small prospective pilot showed favorable feedback of summaries in a real-world clinical setting, though there was a discrepancy between high intention to use the summary but lower perception of time savings. Our results demonstrate that automated pre-charting with accuracy and clinical relevance can be feasible with large language models such as GPT-4. Our design features can inform the development of vendor chart summarization solutions.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"312-321"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150724/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Automated Precharting using GPT-4 in New Specialty Referrals.\",\"authors\":\"April S Liang, Juan M Banda, Thomas Savage, Abby Pandya, Rebecca Carey, Uchechukwu C Megwalu, Michael T Chang, Dev Dash, Conor K Corbin, Aditya Sharma, Rahul Thapa, Nikesh Kotecha, Nigam H Shah, Jennifer Y Lee, Jonathan H Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the feasibility of using GPT-4 to automate precharting for specialty referrals, focusing on new patients referred to an otolaryngology clinic for nasal congestion. We describe the design decisions and strategies tested in creating this precharting utility, including methods for prompt design and token limit handling. Through iterative testing and building, our tool achieved 95.0% agreement with physician consensus in a small retrospective test sample. Results from a small prospective pilot showed favorable feedback of summaries in a real-world clinical setting, though there was a discrepancy between high intention to use the summary but lower perception of time savings. Our results demonstrate that automated pre-charting with accuracy and clinical relevance can be feasible with large language models such as GPT-4. Our design features can inform the development of vendor chart summarization solutions.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"312-321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了使用GPT-4自动预诊专科转诊的可行性,重点关注耳鼻喉科诊所因鼻塞而转诊的新患者。我们描述了在创建此预绘制实用程序时测试的设计决策和策略,包括用于提示设计和令牌限制处理的方法。通过反复测试和构建,我们的工具在一个小的回顾性测试样本中与医生的共识达成了95.0%的一致性。从一个小型的前瞻性试点的结果显示,在现实世界的临床环境中,总结的反馈是有利的,尽管在使用总结的高意愿和较低的时间节省的感知之间存在差异。我们的研究结果表明,在GPT-4等大型语言模型中,具有准确性和临床相关性的自动预表是可行的。我们的设计特性可以为供应商图表总结解决方案的开发提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of Automated Precharting using GPT-4 in New Specialty Referrals.

This study evaluates the feasibility of using GPT-4 to automate precharting for specialty referrals, focusing on new patients referred to an otolaryngology clinic for nasal congestion. We describe the design decisions and strategies tested in creating this precharting utility, including methods for prompt design and token limit handling. Through iterative testing and building, our tool achieved 95.0% agreement with physician consensus in a small retrospective test sample. Results from a small prospective pilot showed favorable feedback of summaries in a real-world clinical setting, though there was a discrepancy between high intention to use the summary but lower perception of time savings. Our results demonstrate that automated pre-charting with accuracy and clinical relevance can be feasible with large language models such as GPT-4. Our design features can inform the development of vendor chart summarization solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信