在临床人工智能中建立信任:一个基于网络的可解释的慢性肾脏疾病决策支持系统。

Krishna Mridha, Ming Wang, Lijun Zhang
{"title":"在临床人工智能中建立信任:一个基于网络的可解释的慢性肾脏疾病决策支持系统。","authors":"Krishna Mridha, Ming Wang, Lijun Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic Kidney Disease (CKD) is a significant global public health issue, affecting over 10% of the population. Timely diagnosis is crucial for effective management. Leveraging machine learning within healthcare offers promising advancements in predictive diagnostics. We developed a Web-Based Clinical Decision Support System (CDSS) for CKD, incorporating advanced Explainable AI (XAI) methods, specifically SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations). The model employs and evaluates multiple classifiers: KNN, Random Forest, AdaBoost, XGBoost, CatBoost, and Extra Trees, to predict CKD. The effectiveness of the models is assessed by measuring their accuracy, analyzing confusion matrix statistics, and the AUC. AdaBoost achieved a 100% accuracy rate. Except for KNN, all classifiers consistently reached perfect precision and sensitivity. Additionally, we present a real-time web-based application to operationalize the model, enhancing trust and accessibility for healthcare practitioners and stakeholder.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"375-384"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Building Trust in Clinical AI: A Web-Based Explainable Decision Support System for Chronic Kidney Disease.\",\"authors\":\"Krishna Mridha, Ming Wang, Lijun Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic Kidney Disease (CKD) is a significant global public health issue, affecting over 10% of the population. Timely diagnosis is crucial for effective management. Leveraging machine learning within healthcare offers promising advancements in predictive diagnostics. We developed a Web-Based Clinical Decision Support System (CDSS) for CKD, incorporating advanced Explainable AI (XAI) methods, specifically SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations). The model employs and evaluates multiple classifiers: KNN, Random Forest, AdaBoost, XGBoost, CatBoost, and Extra Trees, to predict CKD. The effectiveness of the models is assessed by measuring their accuracy, analyzing confusion matrix statistics, and the AUC. AdaBoost achieved a 100% accuracy rate. Except for KNN, all classifiers consistently reached perfect precision and sensitivity. Additionally, we present a real-time web-based application to operationalize the model, enhancing trust and accessibility for healthcare practitioners and stakeholder.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"375-384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

慢性肾脏疾病(CKD)是一个重大的全球公共卫生问题,影响着超过10%的人口。及时诊断是有效治疗的关键。在医疗保健领域利用机器学习为预测性诊断提供了有希望的进步。我们为CKD开发了一个基于网络的临床决策支持系统(CDSS),结合了先进的可解释人工智能(XAI)方法,特别是Shapley加性解释(Shapley Additive explanation)和LIME (Local Interpretable Model-agnostic explanation)。该模型采用并评估多个分类器:KNN、Random Forest、AdaBoost、XGBoost、CatBoost和Extra Trees来预测CKD。通过测量模型的准确性、分析混淆矩阵统计和AUC来评估模型的有效性。AdaBoost达到了100%的准确率。除KNN外,所有分类器的精度和灵敏度都达到了很好的水平。此外,我们提出了一个实时的基于web的应用程序来操作模型,增强了医疗保健从业者和利益相关者的信任和可访问性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building Trust in Clinical AI: A Web-Based Explainable Decision Support System for Chronic Kidney Disease.

Chronic Kidney Disease (CKD) is a significant global public health issue, affecting over 10% of the population. Timely diagnosis is crucial for effective management. Leveraging machine learning within healthcare offers promising advancements in predictive diagnostics. We developed a Web-Based Clinical Decision Support System (CDSS) for CKD, incorporating advanced Explainable AI (XAI) methods, specifically SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations). The model employs and evaluates multiple classifiers: KNN, Random Forest, AdaBoost, XGBoost, CatBoost, and Extra Trees, to predict CKD. The effectiveness of the models is assessed by measuring their accuracy, analyzing confusion matrix statistics, and the AUC. AdaBoost achieved a 100% accuracy rate. Except for KNN, all classifiers consistently reached perfect precision and sensitivity. Additionally, we present a real-time web-based application to operationalize the model, enhancing trust and accessibility for healthcare practitioners and stakeholder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信