自动化和评估大型语言模型在零射击条件下准确的文本摘要。

Maria Priebe Mendes Rocha, Hilda B Klasky
{"title":"自动化和评估大型语言模型在零射击条件下准确的文本摘要。","authors":"Maria Priebe Mendes Rocha, Hilda B Klasky","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Automated text summarization (ATS) is crucial for collecting specialized, domain-specific information. Zero-shot learning (ZSL) allows large language models (LLMs) to respond to prompts on information not included in their training, playing a vital role in this process. This study evaluates LLMs' effectiveness in generating accurate summaries under ZSL conditions and explores using retrieval augmented generation (RAG) and prompt engineering to enhance factual accuracy and understanding. We combined LLMs with summarization modeling, prompt engineering, and RAG, evaluating the summaries using the METEOR metric and keyword frequencies through word clouds. Results indicate that LLMs are generally well-suited for ATS tasks, demonstrating an ability to handle specialized information under ZSL conditions with RAG. However, web scraping limitations hinder a single generalized retrieval mechanism. While LLMs show promise for ATS under ZSL conditions with RAG, challenges like goal misgeneralization and web scraping limitations need addressing. Future research should focus on solutions to these issues.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"461-470"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automating and Evaluating Large Language Models for Accurate Text Summarization Under Zero-Shot Conditions.\",\"authors\":\"Maria Priebe Mendes Rocha, Hilda B Klasky\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated text summarization (ATS) is crucial for collecting specialized, domain-specific information. Zero-shot learning (ZSL) allows large language models (LLMs) to respond to prompts on information not included in their training, playing a vital role in this process. This study evaluates LLMs' effectiveness in generating accurate summaries under ZSL conditions and explores using retrieval augmented generation (RAG) and prompt engineering to enhance factual accuracy and understanding. We combined LLMs with summarization modeling, prompt engineering, and RAG, evaluating the summaries using the METEOR metric and keyword frequencies through word clouds. Results indicate that LLMs are generally well-suited for ATS tasks, demonstrating an ability to handle specialized information under ZSL conditions with RAG. However, web scraping limitations hinder a single generalized retrieval mechanism. While LLMs show promise for ATS under ZSL conditions with RAG, challenges like goal misgeneralization and web scraping limitations need addressing. Future research should focus on solutions to these issues.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"461-470\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动文本摘要(ATS)对于收集专门化的、特定于领域的信息至关重要。Zero-shot learning (ZSL)允许大型语言模型(llm)对训练中未包含的信息做出响应,在此过程中起着至关重要的作用。本研究评估了llm在ZSL条件下生成准确摘要的有效性,并探索了使用检索增强生成(RAG)和提示工程来提高事实准确性和理解。我们将法学硕士与摘要建模、提示工程和RAG结合起来,使用METEOR度量和通过词云的关键字频率来评估摘要。结果表明llm通常非常适合ATS任务,展示了在ZSL条件下使用RAG处理专门信息的能力。然而,网页抓取的局限性阻碍了单一的通用检索机制。虽然llm显示了在ZSL条件下使用RAG进行ATS的希望,但需要解决目标错误概括和网络抓取限制等挑战。未来的研究应侧重于解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating and Evaluating Large Language Models for Accurate Text Summarization Under Zero-Shot Conditions.

Automated text summarization (ATS) is crucial for collecting specialized, domain-specific information. Zero-shot learning (ZSL) allows large language models (LLMs) to respond to prompts on information not included in their training, playing a vital role in this process. This study evaluates LLMs' effectiveness in generating accurate summaries under ZSL conditions and explores using retrieval augmented generation (RAG) and prompt engineering to enhance factual accuracy and understanding. We combined LLMs with summarization modeling, prompt engineering, and RAG, evaluating the summaries using the METEOR metric and keyword frequencies through word clouds. Results indicate that LLMs are generally well-suited for ATS tasks, demonstrating an ability to handle specialized information under ZSL conditions with RAG. However, web scraping limitations hinder a single generalized retrieval mechanism. While LLMs show promise for ATS under ZSL conditions with RAG, challenges like goal misgeneralization and web scraping limitations need addressing. Future research should focus on solutions to these issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信