使用大型语言模型自动识别工作场所暴力和沟通失败事件报告。

Mike Becker, Sy Hwang, Emily Schriver, Caryn Douma, Caoimhe Duffy, Joshua Atkins, Caitlyn McShane, Jason Lubken, Asaf Hanish, John D McGreevey, Susan Harkness Regli, Danielle L Mowery
{"title":"使用大型语言模型自动识别工作场所暴力和沟通失败事件报告。","authors":"Mike Becker, Sy Hwang, Emily Schriver, Caryn Douma, Caoimhe Duffy, Joshua Atkins, Caitlyn McShane, Jason Lubken, Asaf Hanish, John D McGreevey, Susan Harkness Regli, Danielle L Mowery","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Safety event reporting forms a cornerstone of identifying and mitigating risks to patient and staff safety. However, variabilities in reporting and limited resources to analyze and classify event reports delay healthcare organizations' ability to rapidly identify safety event trends and to improve workplace safety. We demonstrated how large language models can classify safety event report narratives as workplace violence (F1: 0.80 for physical violence; F1: 0.94 for verbal abuse) and communication failures (F1: 0.94) as a first step toward enabling automated labeling of safety event reports and ultimately improving workplace safety.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"74-83"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150719/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatically Identifying Event Reports of Workplace Violence and Communication Failures using Large Language Models.\",\"authors\":\"Mike Becker, Sy Hwang, Emily Schriver, Caryn Douma, Caoimhe Duffy, Joshua Atkins, Caitlyn McShane, Jason Lubken, Asaf Hanish, John D McGreevey, Susan Harkness Regli, Danielle L Mowery\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Safety event reporting forms a cornerstone of identifying and mitigating risks to patient and staff safety. However, variabilities in reporting and limited resources to analyze and classify event reports delay healthcare organizations' ability to rapidly identify safety event trends and to improve workplace safety. We demonstrated how large language models can classify safety event report narratives as workplace violence (F1: 0.80 for physical violence; F1: 0.94 for verbal abuse) and communication failures (F1: 0.94) as a first step toward enabling automated labeling of safety event reports and ultimately improving workplace safety.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"74-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

安全事件报告是识别和减轻患者和工作人员安全风险的基石。然而,报告的可变性和用于分析和分类事件报告的有限资源延迟了医疗保健组织快速识别安全事件趋势和改进工作场所安全性的能力。我们证明了大型语言模型如何将安全事件报告叙述分类为工作场所暴力(身体暴力的F1: 0.80;F1: 0.94(言语虐待)和沟通失败(F1: 0.94)作为实现安全事件报告自动标记并最终改善工作场所安全的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatically Identifying Event Reports of Workplace Violence and Communication Failures using Large Language Models.

Safety event reporting forms a cornerstone of identifying and mitigating risks to patient and staff safety. However, variabilities in reporting and limited resources to analyze and classify event reports delay healthcare organizations' ability to rapidly identify safety event trends and to improve workplace safety. We demonstrated how large language models can classify safety event report narratives as workplace violence (F1: 0.80 for physical violence; F1: 0.94 for verbal abuse) and communication failures (F1: 0.94) as a first step toward enabling automated labeling of safety event reports and ultimately improving workplace safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信