精确肿瘤学电子健康记录标准化的实时数据管道实现。

Kory Kreimeyer, Durrant Barasa, Mohamed Sherief, Xiaorui Shi, Marvin Borja, Srinivasan Yegnasubramanian, Valsamo Anagnostou, Joseph C Murray, Taxiarchis Botsis
{"title":"精确肿瘤学电子健康记录标准化的实时数据管道实现。","authors":"Kory Kreimeyer, Durrant Barasa, Mohamed Sherief, Xiaorui Shi, Marvin Borja, Srinivasan Yegnasubramanian, Valsamo Anagnostou, Joseph C Murray, Taxiarchis Botsis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Several use cases in precision oncology require accurately extracting and standardizing Real-World Data from Electronic Health Records (EHRs). We developed the infrastructure and a toolset incorporating data mining and natural language processing scripts to automatically retrieve selected descriptive and common endpoint variables from EHRs. This toolset was evaluated against a reference dataset of 106 lung cancer and 45 sarcoma patient cases pulled from two databases complying with the Precision Oncology Core Data Model (Precision-DM) and maintained by the Johns Hopkins Molecular Tumor Board and a research team. We accurately retrieved most descriptive EHR fields but less efficiently extracted the Date of Diagnosis and Treatment Start Date that supported calculating the Age at Diagnosis, Overall Survival, and Time to First Treatment (accuracy range 50%-86%). Our infrastructure and Precision-DM-based standardization could inspire similar efforts in other cancer centers, however, the toolset should be enhanced to improve accuracy in certain variables.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"242-249"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150718/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Implemented Real-World-Data Pipeline for Standardization of Electronic Health Records in Precision Oncology.\",\"authors\":\"Kory Kreimeyer, Durrant Barasa, Mohamed Sherief, Xiaorui Shi, Marvin Borja, Srinivasan Yegnasubramanian, Valsamo Anagnostou, Joseph C Murray, Taxiarchis Botsis\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several use cases in precision oncology require accurately extracting and standardizing Real-World Data from Electronic Health Records (EHRs). We developed the infrastructure and a toolset incorporating data mining and natural language processing scripts to automatically retrieve selected descriptive and common endpoint variables from EHRs. This toolset was evaluated against a reference dataset of 106 lung cancer and 45 sarcoma patient cases pulled from two databases complying with the Precision Oncology Core Data Model (Precision-DM) and maintained by the Johns Hopkins Molecular Tumor Board and a research team. We accurately retrieved most descriptive EHR fields but less efficiently extracted the Date of Diagnosis and Treatment Start Date that supported calculating the Age at Diagnosis, Overall Survival, and Time to First Treatment (accuracy range 50%-86%). Our infrastructure and Precision-DM-based standardization could inspire similar efforts in other cancer centers, however, the toolset should be enhanced to improve accuracy in certain variables.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"242-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150718/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精确肿瘤学中的几个用例需要从电子健康记录(EHRs)中准确提取和标准化真实世界数据。我们开发了包含数据挖掘和自然语言处理脚本的基础设施和工具集,以便从电子病历中自动检索选定的描述性和公共端点变量。该工具集与来自两个数据库的106例肺癌和45例肉瘤患者的参考数据集进行了评估,这些数据库符合精确肿瘤学核心数据模型(Precision- dm),并由约翰霍普金斯分子肿瘤委员会和一个研究小组维护。我们准确地检索了大多数描述性EHR字段,但提取诊断日期和治疗开始日期的效率较低,这些数据支持计算诊断年龄、总生存期和首次治疗时间(准确率范围为50%-86%)。我们的基础设施和基于precision dm的标准化可以在其他癌症中心激发类似的努力,然而,应该加强工具集以提高某些变量的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Implemented Real-World-Data Pipeline for Standardization of Electronic Health Records in Precision Oncology.

Several use cases in precision oncology require accurately extracting and standardizing Real-World Data from Electronic Health Records (EHRs). We developed the infrastructure and a toolset incorporating data mining and natural language processing scripts to automatically retrieve selected descriptive and common endpoint variables from EHRs. This toolset was evaluated against a reference dataset of 106 lung cancer and 45 sarcoma patient cases pulled from two databases complying with the Precision Oncology Core Data Model (Precision-DM) and maintained by the Johns Hopkins Molecular Tumor Board and a research team. We accurately retrieved most descriptive EHR fields but less efficiently extracted the Date of Diagnosis and Treatment Start Date that supported calculating the Age at Diagnosis, Overall Survival, and Time to First Treatment (accuracy range 50%-86%). Our infrastructure and Precision-DM-based standardization could inspire similar efforts in other cancer centers, however, the toolset should be enhanced to improve accuracy in certain variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信