使用实验室测试结果(不包括测试名称)将内部代码人工智能映射为LOINC代码:实现医疗数据的国际共享。

Noriyuki Shido, Yuma Iwahashi, Hidenari Ohsawa, Katsushige Furuya, Yasumichi Sakai, Masamichi Ishii, Hiroyuki Hoshimoto, Nobukazu Namiki, Kengo Miyo
{"title":"使用实验室测试结果(不包括测试名称)将内部代码人工智能映射为LOINC代码:实现医疗数据的国际共享。","authors":"Noriyuki Shido, Yuma Iwahashi, Hidenari Ohsawa, Katsushige Furuya, Yasumichi Sakai, Masamichi Ishii, Hiroyuki Hoshimoto, Nobukazu Namiki, Kengo Miyo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>There is an increasing demand for automatic mapping to standardized codes such as LOINC codes to create integrated medical databases across multiple facilities. However, natural language processing (NLP) in Japanese presents greater challenges than in English owing to a limited Japanese corpus for medical terms, such as test names. To address this limitation, we developed a machine learning-based method that maps in-house codes to LOINC codes by leveraging test result values without relying on test names that would require NLP. Using this approach, we achieved high mapping accuracy (70% or higher) for 80.4% of the analytes targeted in this study. The proposed method facilitates easier mapping to standardized codes in languages where NLP is challenging, ensuring accurate mapping to LOINC codes regardless of the source data language.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"511-517"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150744/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI Mapping of In-House Codes to LOINC Codes Using Laboratory Test Results Excluding Test Names: Toward International Sharing of Medical Data.\",\"authors\":\"Noriyuki Shido, Yuma Iwahashi, Hidenari Ohsawa, Katsushige Furuya, Yasumichi Sakai, Masamichi Ishii, Hiroyuki Hoshimoto, Nobukazu Namiki, Kengo Miyo\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is an increasing demand for automatic mapping to standardized codes such as LOINC codes to create integrated medical databases across multiple facilities. However, natural language processing (NLP) in Japanese presents greater challenges than in English owing to a limited Japanese corpus for medical terms, such as test names. To address this limitation, we developed a machine learning-based method that maps in-house codes to LOINC codes by leveraging test result values without relying on test names that would require NLP. Using this approach, we achieved high mapping accuracy (70% or higher) for 80.4% of the analytes targeted in this study. The proposed method facilitates easier mapping to standardized codes in languages where NLP is challenging, ensuring accurate mapping to LOINC codes regardless of the source data language.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":\"2025 \",\"pages\":\"511-517\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150744/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对自动映射到标准化代码(如LOINC代码)以创建跨多个设施的集成医疗数据库的需求越来越大。然而,由于日语医学术语(如测试名称)的日语语料库有限,日语的自然语言处理(NLP)比英语面临更大的挑战。为了解决这个限制,我们开发了一种基于机器学习的方法,通过利用测试结果值将内部代码映射到LOINC代码,而不依赖于需要NLP的测试名称。使用这种方法,我们在本研究中对80.4%的分析物实现了较高的制图精度(70%或更高)。所提出的方法便于在NLP具有挑战性的语言中更容易地映射到标准化代码,确保无论源数据语言如何都能准确映射到LOINC代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI Mapping of In-House Codes to LOINC Codes Using Laboratory Test Results Excluding Test Names: Toward International Sharing of Medical Data.

There is an increasing demand for automatic mapping to standardized codes such as LOINC codes to create integrated medical databases across multiple facilities. However, natural language processing (NLP) in Japanese presents greater challenges than in English owing to a limited Japanese corpus for medical terms, such as test names. To address this limitation, we developed a machine learning-based method that maps in-house codes to LOINC codes by leveraging test result values without relying on test names that would require NLP. Using this approach, we achieved high mapping accuracy (70% or higher) for 80.4% of the analytes targeted in this study. The proposed method facilitates easier mapping to standardized codes in languages where NLP is challenging, ensuring accurate mapping to LOINC codes regardless of the source data language.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信