{"title":"具有多面体不确定性的可恢复鲁棒单机调度。","authors":"Matthew Bold, Marc Goerigk","doi":"10.1007/s10951-024-00828-7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective of minimising the total flow time. In this setting, a decision-maker must determine a first-stage schedule subject to the uncertain job processing times. Then following the realisation of these processing times, they have the option to swap the positions of up to <math><mi>Δ</mi></math> disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation. Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.</p>","PeriodicalId":50061,"journal":{"name":"Journal of Scheduling","volume":"28 3","pages":"269-287"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148977/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recoverable robust single machine scheduling with polyhedral uncertainty.\",\"authors\":\"Matthew Bold, Marc Goerigk\",\"doi\":\"10.1007/s10951-024-00828-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective of minimising the total flow time. In this setting, a decision-maker must determine a first-stage schedule subject to the uncertain job processing times. Then following the realisation of these processing times, they have the option to swap the positions of up to <math><mi>Δ</mi></math> disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation. Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.</p>\",\"PeriodicalId\":50061,\"journal\":{\"name\":\"Journal of Scheduling\",\"volume\":\"28 3\",\"pages\":\"269-287\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148977/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scheduling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10951-024-00828-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scheduling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10951-024-00828-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Recoverable robust single machine scheduling with polyhedral uncertainty.
This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective of minimising the total flow time. In this setting, a decision-maker must determine a first-stage schedule subject to the uncertain job processing times. Then following the realisation of these processing times, they have the option to swap the positions of up to disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation. Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.
期刊介绍:
The Journal of Scheduling provides a recognized global forum for the publication of all forms of scheduling research. First published in June 1998, Journal of Scheduling covers advances in scheduling research, such as the latest techniques, applications, theoretical issues and novel approaches to problems. The journal is of direct relevance to the areas of Computer Science, Discrete Mathematics, Operational Research, Engineering, Management, Artificial Intelligence, Construction, Distribution, Manufacturing, Transport, Aerospace and Retail and Service Industries. These disciplines face complex scheduling needs and all stand to gain from advances in scheduling technology and understanding.