利用转基因斑马鱼模型研究化学诱发的心脏缺陷。

IF 4.1 3区 医学 Q2 TOXICOLOGY
Shujie Liu, Toru Kawanishi, Atsuko Shimada, Yuko Nukada, Masaaki Miyazawa, Hiroyuki Takeda, Junichi Tasaki
{"title":"利用转基因斑马鱼模型研究化学诱发的心脏缺陷。","authors":"Shujie Liu, Toru Kawanishi, Atsuko Shimada, Yuko Nukada, Masaaki Miyazawa, Hiroyuki Takeda, Junichi Tasaki","doi":"10.1093/toxsci/kfaf083","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital heart defects (CHDs) are common birth defects attributed to genetic and environmental factors, such as pharmaceuticals and chemicals. Identifying modifiable environmental factors and understanding their impact on heart development is crucial for mitigating chemical-induced CHDs. Given the increasing number of chemical agents, efficient high-throughput systems are essential to evaluate their teratogenic potential during cardiovascular development, which is a major concern for chemical safety. In this study, we developed 3 transgenic zebrafish reporter lines, myl7:EGFP, kdrl:mRFP, and gata1:mKate2, which enable real-time visualization of myocardial and endocardial development and cardiac function based on blood flow. These transgenic embryos were used to investigate the teratogenic effects of chemicals well known to induce heart defects in mammals, including humans. Our real-time imaging revealed that the teratogens induced significant malformations in cardiac morphogenesis, including abnormal heart tube formation, incomplete cardiac looping, and reduced heart chamber size. These teratogens also disrupted the expression of cardiac progenitor markers, suggesting impaired cardiac progenitor development. These defects were detected at the early stages (4-48 h post-fertilization), suggesting that the stages of progenitor development to heart looping were most susceptible to teratogen exposure, i.e. the critical period for teratogen-induced heart defects. Functional defects, such as impaired blood flow, were observed using real-time imaging of the gata1-reporter line. This study demonstrates the utilization of transgenic zebrafish embryo models for high-throughput teratogenicity testing, which also allows us to analyze the mechanisms underlying chemical-induced heart defects. Therefore, our zebrafish models would contribute to the identification and reduction of risks associated with CHDs.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"57-73"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemical-induced heart defects using a transgenic zebrafish model.\",\"authors\":\"Shujie Liu, Toru Kawanishi, Atsuko Shimada, Yuko Nukada, Masaaki Miyazawa, Hiroyuki Takeda, Junichi Tasaki\",\"doi\":\"10.1093/toxsci/kfaf083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Congenital heart defects (CHDs) are common birth defects attributed to genetic and environmental factors, such as pharmaceuticals and chemicals. Identifying modifiable environmental factors and understanding their impact on heart development is crucial for mitigating chemical-induced CHDs. Given the increasing number of chemical agents, efficient high-throughput systems are essential to evaluate their teratogenic potential during cardiovascular development, which is a major concern for chemical safety. In this study, we developed 3 transgenic zebrafish reporter lines, myl7:EGFP, kdrl:mRFP, and gata1:mKate2, which enable real-time visualization of myocardial and endocardial development and cardiac function based on blood flow. These transgenic embryos were used to investigate the teratogenic effects of chemicals well known to induce heart defects in mammals, including humans. Our real-time imaging revealed that the teratogens induced significant malformations in cardiac morphogenesis, including abnormal heart tube formation, incomplete cardiac looping, and reduced heart chamber size. These teratogens also disrupted the expression of cardiac progenitor markers, suggesting impaired cardiac progenitor development. These defects were detected at the early stages (4-48 h post-fertilization), suggesting that the stages of progenitor development to heart looping were most susceptible to teratogen exposure, i.e. the critical period for teratogen-induced heart defects. Functional defects, such as impaired blood flow, were observed using real-time imaging of the gata1-reporter line. This study demonstrates the utilization of transgenic zebrafish embryo models for high-throughput teratogenicity testing, which also allows us to analyze the mechanisms underlying chemical-induced heart defects. Therefore, our zebrafish models would contribute to the identification and reduction of risks associated with CHDs.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":\" \",\"pages\":\"57-73\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfaf083\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf083","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

先天性心脏缺陷(CHDs)是一种常见的先天缺陷,可归因于遗传和环境因素,如药物和化学品。识别可改变的环境因素并了解其对心脏发育的影响对于减轻化学诱发的冠心病至关重要。鉴于化学制剂的数量不断增加,高效的高通量系统对于评估其在心血管发育过程中的致畸潜力至关重要,这是化学品安全的主要关注点。在这项研究中,我们开发了三种转基因斑马鱼报告系,my17: EGFP, kdrl: MRFP和gata1: MKate2,能够基于血流实时可视化心肌和心内膜发育以及心功能。这些转基因胚胎被用来研究已知的化学物质的致畸作用,这些化学物质会诱发包括人类在内的哺乳动物的心脏缺陷。我们的实时成像显示,致畸物引起了心脏形态发生的明显畸形,包括心管形成异常,心环不完整,心腔大小缩小。这些致畸物也破坏了心脏祖细胞标志物的表达,表明心脏祖细胞发育受损。这些缺陷是在早期(受精后4-48小时)检测到的,这表明祖细胞发育到心脏寻找的阶段最容易受到致畸剂的影响,即致畸剂诱发心脏缺陷的关键时期。利用gata1报告细胞系的实时成像观察功能缺陷,如血流受损。本研究展示了转基因斑马鱼胚胎模型在高通量致畸性检测中的应用,这也使我们能够分析化学诱导的心脏缺陷的机制。因此,我们的斑马鱼模型将有助于识别和降低与冠心病相关的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical-induced heart defects using a transgenic zebrafish model.

Congenital heart defects (CHDs) are common birth defects attributed to genetic and environmental factors, such as pharmaceuticals and chemicals. Identifying modifiable environmental factors and understanding their impact on heart development is crucial for mitigating chemical-induced CHDs. Given the increasing number of chemical agents, efficient high-throughput systems are essential to evaluate their teratogenic potential during cardiovascular development, which is a major concern for chemical safety. In this study, we developed 3 transgenic zebrafish reporter lines, myl7:EGFP, kdrl:mRFP, and gata1:mKate2, which enable real-time visualization of myocardial and endocardial development and cardiac function based on blood flow. These transgenic embryos were used to investigate the teratogenic effects of chemicals well known to induce heart defects in mammals, including humans. Our real-time imaging revealed that the teratogens induced significant malformations in cardiac morphogenesis, including abnormal heart tube formation, incomplete cardiac looping, and reduced heart chamber size. These teratogens also disrupted the expression of cardiac progenitor markers, suggesting impaired cardiac progenitor development. These defects were detected at the early stages (4-48 h post-fertilization), suggesting that the stages of progenitor development to heart looping were most susceptible to teratogen exposure, i.e. the critical period for teratogen-induced heart defects. Functional defects, such as impaired blood flow, were observed using real-time imaging of the gata1-reporter line. This study demonstrates the utilization of transgenic zebrafish embryo models for high-throughput teratogenicity testing, which also allows us to analyze the mechanisms underlying chemical-induced heart defects. Therefore, our zebrafish models would contribute to the identification and reduction of risks associated with CHDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信