Olfactomedin-4在儿童急性呼吸窘迫综合征中的升高。

IF 3.5 2区 医学 Q1 PHYSIOLOGY
Ryan O'Sullivan, Matthew N Alder, Celeste G Dixon, Donglan Zhang, Nishi Srivastava, Nadir Yehya
{"title":"Olfactomedin-4在儿童急性呼吸窘迫综合征中的升高。","authors":"Ryan O'Sullivan, Matthew N Alder, Celeste G Dixon, Donglan Zhang, Nishi Srivastava, Nadir Yehya","doi":"10.1152/ajplung.00040.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils play a key role in acute respiratory distress syndrome (ARDS). The neutrophil marker olfactomedin-4 (OLFM4) has been implicated with worse outcomes in pediatric sepsis; however, OLFM4 has not been studied in pediatric ARDS. Therefore, we performed a secondary analysis of a prospective cohort of children with Berlin-defined ARDS with plasma collected on <i>day 0</i> of ARDS, testing for an association between OLFM4 and 28-day mortality, 7-day dialysis-free survival, and 28-day ventilator-free days (VFDs), adjusting for age, ARDS etiology, immunocompromised status, and arterial partial pressure of oxygen ([Formula: see text])/fraction of inspired oxygen ([Formula: see text]). We also tested the ability of LPS and histones to affect OLFM4 expression in vitro. In 333 children with ARDS (21% nonsurvivors), OLFM4 was higher in nonsurvivors, in severe ARDS, in hyperinflammatory ARDS, and in those with multiple organ failures. In multivariable regression, OLFM4 was associated with higher mortality, higher probability of dialysis by <i>day 7</i>, and fewer VFDs. In stratified analyses, the association between OLFM4 and worse outcomes did not differ between infectious and noninfectious ARDS. In vitro, OLFM4 expression increased following H3 exposure in undifferentiated neutrophils, which was partly mitigated by toll-like receptor (TLR) antagonism. Overall, OLFM4 was associated with worse outcomes in pediatric ARDS. Histone H3 could induce OLFM4 expression in neutrophils, thus linking damage-associated molecular patterns to neutrophil polarization, which may represent a possible targetable pathway in pediatric ARDS.<b>NEW & NOTEWORTHY</b> Olfactomedin-4 (OLFM4) was associated with higher mortality, higher probability of dialysis by <i>day 7</i>, and fewer ventilator-free days (VFDs) in a pediatric acute respiratory distress syndrome (ARDS) cohort. In vitro, OLFM4 increased following H3 exposure in undifferentiated neutrophils, which was partly mitigated by toll-like receptor (TLR) antagonism. OLFM4 appears to be a marker, and potentially a mediator, of pathological inflammation and end-organ damage in ARDS.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L172-L182"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213118/pdf/","citationCount":"0","resultStr":"{\"title\":\"Olfactomedin-4 elevation in pediatric acute respiratory distress syndrome.\",\"authors\":\"Ryan O'Sullivan, Matthew N Alder, Celeste G Dixon, Donglan Zhang, Nishi Srivastava, Nadir Yehya\",\"doi\":\"10.1152/ajplung.00040.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutrophils play a key role in acute respiratory distress syndrome (ARDS). The neutrophil marker olfactomedin-4 (OLFM4) has been implicated with worse outcomes in pediatric sepsis; however, OLFM4 has not been studied in pediatric ARDS. Therefore, we performed a secondary analysis of a prospective cohort of children with Berlin-defined ARDS with plasma collected on <i>day 0</i> of ARDS, testing for an association between OLFM4 and 28-day mortality, 7-day dialysis-free survival, and 28-day ventilator-free days (VFDs), adjusting for age, ARDS etiology, immunocompromised status, and arterial partial pressure of oxygen ([Formula: see text])/fraction of inspired oxygen ([Formula: see text]). We also tested the ability of LPS and histones to affect OLFM4 expression in vitro. In 333 children with ARDS (21% nonsurvivors), OLFM4 was higher in nonsurvivors, in severe ARDS, in hyperinflammatory ARDS, and in those with multiple organ failures. In multivariable regression, OLFM4 was associated with higher mortality, higher probability of dialysis by <i>day 7</i>, and fewer VFDs. In stratified analyses, the association between OLFM4 and worse outcomes did not differ between infectious and noninfectious ARDS. In vitro, OLFM4 expression increased following H3 exposure in undifferentiated neutrophils, which was partly mitigated by toll-like receptor (TLR) antagonism. Overall, OLFM4 was associated with worse outcomes in pediatric ARDS. Histone H3 could induce OLFM4 expression in neutrophils, thus linking damage-associated molecular patterns to neutrophil polarization, which may represent a possible targetable pathway in pediatric ARDS.<b>NEW & NOTEWORTHY</b> Olfactomedin-4 (OLFM4) was associated with higher mortality, higher probability of dialysis by <i>day 7</i>, and fewer ventilator-free days (VFDs) in a pediatric acute respiratory distress syndrome (ARDS) cohort. In vitro, OLFM4 increased following H3 exposure in undifferentiated neutrophils, which was partly mitigated by toll-like receptor (TLR) antagonism. OLFM4 appears to be a marker, and potentially a mediator, of pathological inflammation and end-organ damage in ARDS.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L172-L182\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213118/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00040.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00040.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中性粒细胞在急性呼吸窘迫综合征(ARDS)中起关键作用。中性粒细胞标志物olfactomedin-4 (OLFM4)与儿童脓毒症的预后较差有关;然而,OLFM4在儿童ARDS中的作用尚未得到研究。因此,我们对一组柏林定义的急性呼吸窘迫综合征患儿进行了二次分析,这些患儿在急性呼吸窘迫综合征发病第0天收集血浆,检测OLFM4与28天死亡率、7天无透析生存率和28天无呼吸机天数(vfd)之间的关系,并根据年龄、急性呼吸窘迫综合征病因、免疫功能低下状态和PaO2/FIO2进行调整。我们还在体外测试了LPS和组蛋白对OLFM4表达的影响。在333名患有ARDS的儿童(21%非幸存者)中,OLFM4在非幸存者、严重ARDS、高炎症性ARDS和多器官衰竭患者中较高。在多变量回归中,OLFM4与更高的死亡率、第7天透析的更高概率和更少的vfd相关。在分层分析中,感染性和非感染性ARDS中,OLFM4与较差结局之间的关联没有差异。在体外,未分化的中性粒细胞暴露于H3后,OLFM4的表达增加,TLR拮抗剂部分减轻了这种表达。总体而言,OLFM4与儿童ARDS预后较差相关。组蛋白H3可以诱导中性粒细胞中OLFM4的表达,从而将损伤相关的分子模式与中性粒细胞极化联系起来,这可能是儿童ARDS的一个可能的靶向途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Olfactomedin-4 elevation in pediatric acute respiratory distress syndrome.

Neutrophils play a key role in acute respiratory distress syndrome (ARDS). The neutrophil marker olfactomedin-4 (OLFM4) has been implicated with worse outcomes in pediatric sepsis; however, OLFM4 has not been studied in pediatric ARDS. Therefore, we performed a secondary analysis of a prospective cohort of children with Berlin-defined ARDS with plasma collected on day 0 of ARDS, testing for an association between OLFM4 and 28-day mortality, 7-day dialysis-free survival, and 28-day ventilator-free days (VFDs), adjusting for age, ARDS etiology, immunocompromised status, and arterial partial pressure of oxygen ([Formula: see text])/fraction of inspired oxygen ([Formula: see text]). We also tested the ability of LPS and histones to affect OLFM4 expression in vitro. In 333 children with ARDS (21% nonsurvivors), OLFM4 was higher in nonsurvivors, in severe ARDS, in hyperinflammatory ARDS, and in those with multiple organ failures. In multivariable regression, OLFM4 was associated with higher mortality, higher probability of dialysis by day 7, and fewer VFDs. In stratified analyses, the association between OLFM4 and worse outcomes did not differ between infectious and noninfectious ARDS. In vitro, OLFM4 expression increased following H3 exposure in undifferentiated neutrophils, which was partly mitigated by toll-like receptor (TLR) antagonism. Overall, OLFM4 was associated with worse outcomes in pediatric ARDS. Histone H3 could induce OLFM4 expression in neutrophils, thus linking damage-associated molecular patterns to neutrophil polarization, which may represent a possible targetable pathway in pediatric ARDS.NEW & NOTEWORTHY Olfactomedin-4 (OLFM4) was associated with higher mortality, higher probability of dialysis by day 7, and fewer ventilator-free days (VFDs) in a pediatric acute respiratory distress syndrome (ARDS) cohort. In vitro, OLFM4 increased following H3 exposure in undifferentiated neutrophils, which was partly mitigated by toll-like receptor (TLR) antagonism. OLFM4 appears to be a marker, and potentially a mediator, of pathological inflammation and end-organ damage in ARDS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信