Jacopo Lupi, Bernardo Ballotta, Leandro Ayarde-Henríquez, Stephen Dooley
{"title":"热解条件下单质子和双质子转移开环的研究","authors":"Jacopo Lupi, Bernardo Ballotta, Leandro Ayarde-Henríquez, Stephen Dooley","doi":"10.1002/jcc.70151","DOIUrl":null,"url":null,"abstract":"<p>This study unveils a new transition state (TS) leading to the acyclic product via synchronous double proton transfer by automatedly exploring the potential energy surface of <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math>-D-xylopyranose under pyrolysis conditions. Quantum chemistry methods with multi-path canonical variational transition state theory show that the standard activation enthalpy of the new TS (44.9 kcal <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>mol</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{mol}}^{-1} $$</annotation>\n </semantics></math>) is 1.5 kcal <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>mol</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{mol}}^{-1} $$</annotation>\n </semantics></math> lower than that of the well-established channel; however, the latter's rate constant (<span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>.</mo>\n <mn>36</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mrow>\n <mn>0</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ 4.36\\times 1{0}^{-2} $$</annotation>\n </semantics></math>–<span></span><math>\n <semantics>\n <mrow>\n <mn>9</mn>\n <mo>.</mo>\n <mn>96</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mrow>\n <mn>0</mn>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ 9.96\\times 1{0}^1 $$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>s</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{s}}^{-1} $$</annotation>\n </semantics></math>) is higher in the 673.15–873.15 K pyrolytic range by a factor of 5–8. This gap narrows to a factor of 2 within 320–400 K, signifying that the new TS can potentially impact the acyclic product production in this low-temperature regime. This is particularly relevant for <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math>-D-xylopyranose trimers, as the interior unit bears different substituents at the C1 and C3 positions.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 16","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70151","citationCount":"0","resultStr":"{\"title\":\"Xylopyranose Ring-Opening by Single and Double Proton Transfers Under Pyrolysis Conditions\",\"authors\":\"Jacopo Lupi, Bernardo Ballotta, Leandro Ayarde-Henríquez, Stephen Dooley\",\"doi\":\"10.1002/jcc.70151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study unveils a new transition state (TS) leading to the acyclic product via synchronous double proton transfer by automatedly exploring the potential energy surface of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation>$$ \\\\beta $$</annotation>\\n </semantics></math>-D-xylopyranose under pyrolysis conditions. Quantum chemistry methods with multi-path canonical variational transition state theory show that the standard activation enthalpy of the new TS (44.9 kcal <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>mol</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{mol}}^{-1} $$</annotation>\\n </semantics></math>) is 1.5 kcal <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>mol</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{mol}}^{-1} $$</annotation>\\n </semantics></math> lower than that of the well-established channel; however, the latter's rate constant (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mo>.</mo>\\n <mn>36</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n <msup>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ 4.36\\\\times 1{0}^{-2} $$</annotation>\\n </semantics></math>–<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>9</mn>\\n <mo>.</mo>\\n <mn>96</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n <msup>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ 9.96\\\\times 1{0}^1 $$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>s</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{s}}^{-1} $$</annotation>\\n </semantics></math>) is higher in the 673.15–873.15 K pyrolytic range by a factor of 5–8. This gap narrows to a factor of 2 within 320–400 K, signifying that the new TS can potentially impact the acyclic product production in this low-temperature regime. This is particularly relevant for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation>$$ \\\\beta $$</annotation>\\n </semantics></math>-D-xylopyranose trimers, as the interior unit bears different substituents at the C1 and C3 positions.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 16\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70151\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70151\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70151","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Xylopyranose Ring-Opening by Single and Double Proton Transfers Under Pyrolysis Conditions
This study unveils a new transition state (TS) leading to the acyclic product via synchronous double proton transfer by automatedly exploring the potential energy surface of -D-xylopyranose under pyrolysis conditions. Quantum chemistry methods with multi-path canonical variational transition state theory show that the standard activation enthalpy of the new TS (44.9 kcal ) is 1.5 kcal lower than that of the well-established channel; however, the latter's rate constant (– ) is higher in the 673.15–873.15 K pyrolytic range by a factor of 5–8. This gap narrows to a factor of 2 within 320–400 K, signifying that the new TS can potentially impact the acyclic product production in this low-temperature regime. This is particularly relevant for -D-xylopyranose trimers, as the interior unit bears different substituents at the C1 and C3 positions.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.