{"title":"逆γ随机波动模型的精确似然","authors":"Roberto Leon-Gonzalez, Blessings Majoni","doi":"10.1111/jtsa.12795","DOIUrl":null,"url":null,"abstract":"<p>We obtain a novel analytic expression of the likelihood for a stationary inverse gamma stochastic volatility (SV) model. This allows us to obtain the maximum likelihood estimator for this nonlinear non-Gaussian state space model. Further, we obtain both the filtering and smoothing distributions for the inverse volatilities as mixtures of gammas, and therefore, we can provide the smoothed estimates of the volatility. We show that by integrating out the volatilities the model that we obtain has the resemblance of a GARCH in the sense that the formulas are similar, which simplifies computations significantly. The model allows for fat tails in the observed data. We provide empirical applications using exchange rates data for seven currencies and quarterly inflation data for four countries. We find that the empirical fit of our proposed model is overall better than alternative models for four countries currency data and for two countries inflation data.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 4","pages":"774-795"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact likelihood for inverse gamma stochastic volatility models\",\"authors\":\"Roberto Leon-Gonzalez, Blessings Majoni\",\"doi\":\"10.1111/jtsa.12795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain a novel analytic expression of the likelihood for a stationary inverse gamma stochastic volatility (SV) model. This allows us to obtain the maximum likelihood estimator for this nonlinear non-Gaussian state space model. Further, we obtain both the filtering and smoothing distributions for the inverse volatilities as mixtures of gammas, and therefore, we can provide the smoothed estimates of the volatility. We show that by integrating out the volatilities the model that we obtain has the resemblance of a GARCH in the sense that the formulas are similar, which simplifies computations significantly. The model allows for fat tails in the observed data. We provide empirical applications using exchange rates data for seven currencies and quarterly inflation data for four countries. We find that the empirical fit of our proposed model is overall better than alternative models for four countries currency data and for two countries inflation data.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"46 4\",\"pages\":\"774-795\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12795\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12795","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Exact likelihood for inverse gamma stochastic volatility models
We obtain a novel analytic expression of the likelihood for a stationary inverse gamma stochastic volatility (SV) model. This allows us to obtain the maximum likelihood estimator for this nonlinear non-Gaussian state space model. Further, we obtain both the filtering and smoothing distributions for the inverse volatilities as mixtures of gammas, and therefore, we can provide the smoothed estimates of the volatility. We show that by integrating out the volatilities the model that we obtain has the resemblance of a GARCH in the sense that the formulas are similar, which simplifies computations significantly. The model allows for fat tails in the observed data. We provide empirical applications using exchange rates data for seven currencies and quarterly inflation data for four countries. We find that the empirical fit of our proposed model is overall better than alternative models for four countries currency data and for two countries inflation data.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.