Yipeng Zhuang, Dong Li, Philip L. H. Yu, Wai Keung Li
{"title":"在缓冲移动平均模型上","authors":"Yipeng Zhuang, Dong Li, Philip L. H. Yu, Wai Keung Li","doi":"10.1111/jtsa.12778","DOIUrl":null,"url":null,"abstract":"<p>There has been growing interest in extending the popular threshold time series models to include a buffer zone for regime transition. However, almost all attention has been on buffered autoregressive models. Note that the classical moving average (MA) model plays an equally important role as the autoregressive model in classical time series analysis. It is therefore natural to extend our investigation to the buffered MA (BMA) model. We focus on the first-order BMA model while extending to more general MA model should be direct in principle. The proposed model shares the piecewise linear structure of the threshold model, but has a more flexible regime switching mechanism. Its probabilistic structure is studied to some extent. A nonlinear least squares estimation procedure is proposed. Under some standard regularity conditions, the estimator is strongly consistent and the estimator of the coefficients is asymptotically normal when the parameter of the boundary of the buffer zone is known. A portmanteau goodness-of-fit test is derived. Simulation results and empirical examples are carried out and lend further support to the usefulness of the BMA model and the asymptotic results.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 4","pages":"599-622"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On buffered moving average models\",\"authors\":\"Yipeng Zhuang, Dong Li, Philip L. H. Yu, Wai Keung Li\",\"doi\":\"10.1111/jtsa.12778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There has been growing interest in extending the popular threshold time series models to include a buffer zone for regime transition. However, almost all attention has been on buffered autoregressive models. Note that the classical moving average (MA) model plays an equally important role as the autoregressive model in classical time series analysis. It is therefore natural to extend our investigation to the buffered MA (BMA) model. We focus on the first-order BMA model while extending to more general MA model should be direct in principle. The proposed model shares the piecewise linear structure of the threshold model, but has a more flexible regime switching mechanism. Its probabilistic structure is studied to some extent. A nonlinear least squares estimation procedure is proposed. Under some standard regularity conditions, the estimator is strongly consistent and the estimator of the coefficients is asymptotically normal when the parameter of the boundary of the buffer zone is known. A portmanteau goodness-of-fit test is derived. Simulation results and empirical examples are carried out and lend further support to the usefulness of the BMA model and the asymptotic results.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"46 4\",\"pages\":\"599-622\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12778\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12778","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
There has been growing interest in extending the popular threshold time series models to include a buffer zone for regime transition. However, almost all attention has been on buffered autoregressive models. Note that the classical moving average (MA) model plays an equally important role as the autoregressive model in classical time series analysis. It is therefore natural to extend our investigation to the buffered MA (BMA) model. We focus on the first-order BMA model while extending to more general MA model should be direct in principle. The proposed model shares the piecewise linear structure of the threshold model, but has a more flexible regime switching mechanism. Its probabilistic structure is studied to some extent. A nonlinear least squares estimation procedure is proposed. Under some standard regularity conditions, the estimator is strongly consistent and the estimator of the coefficients is asymptotically normal when the parameter of the boundary of the buffer zone is known. A portmanteau goodness-of-fit test is derived. Simulation results and empirical examples are carried out and lend further support to the usefulness of the BMA model and the asymptotic results.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.