有机气溶胶组成的季节性分析解决了中欧农村背景站的人为和生物来源†

IF 2.8 Q3 ENVIRONMENTAL SCIENCES
Markus Thoma, Franziska Bachmeier, Karina Knauf, Julia David, Mario Simon and Alexander L. Vogel
{"title":"有机气溶胶组成的季节性分析解决了中欧农村背景站的人为和生物来源†","authors":"Markus Thoma, Franziska Bachmeier, Karina Knauf, Julia David, Mario Simon and Alexander L. Vogel","doi":"10.1039/D4EA00163J","DOIUrl":null,"url":null,"abstract":"<p >Organic aerosol (OA) has a significant impact on Earth's climate and human health, while its chemical composition remains largely unknown. A detailed analysis of the chemical composition of particulate matter (PM) can identify origins, sources and transformation pathways and reveal mitigation potential for the anthropogenic organic fraction. Here, we follow a top-down molecular resolution approach of source attribution of organic compounds in PM<small><sub>2.5</sub></small> at a rural background station in central Europe. One year of PM filters were measured using ultra-high-performance liquid chromatography coupled to electrospray ionisation high-resolution Orbitrap mass spectrometry. Non-target analysis detected over 6000 compounds, which hierarchical cluster analysis separated into a biogenic and an anthropogenic compound cluster. Compounds of the biogenic cluster make up a large part of SOA during summer, indicating strong local influence by the vegetation. Anthropogenic compounds are relatively enriched during colder conditions, with temporarily strong transport of air pollution. Concentration-weighted trajectories show the air mass origins of these pollution events and allow for an interpretation of potential sources.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 6","pages":" 703-713"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d4ea00163j?page=search","citationCount":"0","resultStr":"{\"title\":\"Seasonal analysis of organic aerosol composition resolves anthropogenic and biogenic sources at a rural background station in central Europe†\",\"authors\":\"Markus Thoma, Franziska Bachmeier, Karina Knauf, Julia David, Mario Simon and Alexander L. Vogel\",\"doi\":\"10.1039/D4EA00163J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic aerosol (OA) has a significant impact on Earth's climate and human health, while its chemical composition remains largely unknown. A detailed analysis of the chemical composition of particulate matter (PM) can identify origins, sources and transformation pathways and reveal mitigation potential for the anthropogenic organic fraction. Here, we follow a top-down molecular resolution approach of source attribution of organic compounds in PM<small><sub>2.5</sub></small> at a rural background station in central Europe. One year of PM filters were measured using ultra-high-performance liquid chromatography coupled to electrospray ionisation high-resolution Orbitrap mass spectrometry. Non-target analysis detected over 6000 compounds, which hierarchical cluster analysis separated into a biogenic and an anthropogenic compound cluster. Compounds of the biogenic cluster make up a large part of SOA during summer, indicating strong local influence by the vegetation. Anthropogenic compounds are relatively enriched during colder conditions, with temporarily strong transport of air pollution. Concentration-weighted trajectories show the air mass origins of these pollution events and allow for an interpretation of potential sources.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 6\",\"pages\":\" 703-713\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d4ea00163j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00163j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00163j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有机气溶胶(OA)对地球气候和人类健康有重大影响,而其化学成分在很大程度上仍然未知。对颗粒物(PM)化学成分的详细分析可以确定起源、来源和转化途径,并揭示人为有机组分的减缓潜力。在这里,我们采用自上而下的分子解析方法,在中欧农村背景站研究PM2.5中有机化合物的来源归属。使用超高效液相色谱耦合电喷雾电离高分辨率Orbitrap质谱法测量了一年的PM过滤器。非目标分析检测到6000多个化合物,分层聚类分析将其分为生物源和人为源化合物簇。在夏季,生物源簇的化合物占SOA的很大一部分,表明植被对局部的影响很强。在较冷的条件下,由于空气污染的暂时强输送,人为化合物相对丰富。浓度加权轨迹显示了这些污染事件的气团起源,并允许对潜在来源进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal analysis of organic aerosol composition resolves anthropogenic and biogenic sources at a rural background station in central Europe†

Organic aerosol (OA) has a significant impact on Earth's climate and human health, while its chemical composition remains largely unknown. A detailed analysis of the chemical composition of particulate matter (PM) can identify origins, sources and transformation pathways and reveal mitigation potential for the anthropogenic organic fraction. Here, we follow a top-down molecular resolution approach of source attribution of organic compounds in PM2.5 at a rural background station in central Europe. One year of PM filters were measured using ultra-high-performance liquid chromatography coupled to electrospray ionisation high-resolution Orbitrap mass spectrometry. Non-target analysis detected over 6000 compounds, which hierarchical cluster analysis separated into a biogenic and an anthropogenic compound cluster. Compounds of the biogenic cluster make up a large part of SOA during summer, indicating strong local influence by the vegetation. Anthropogenic compounds are relatively enriched during colder conditions, with temporarily strong transport of air pollution. Concentration-weighted trajectories show the air mass origins of these pollution events and allow for an interpretation of potential sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信