二维和三维粗糙系统的能量函数

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jean-Marc Ginoux , Riccardo Meucci , Jaume Llibre , Julien Clinton Sprott
{"title":"二维和三维粗糙系统的能量函数","authors":"Jean-Marc Ginoux ,&nbsp;Riccardo Meucci ,&nbsp;Jaume Llibre ,&nbsp;Julien Clinton Sprott","doi":"10.1016/j.chaos.2025.116643","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, while using the <em>Flow Curvature Method</em> developed by one of us (JMG), we prove that the <em>energy function</em> of two and three-dimensional <em>coarse systems</em> involving a small parameter <span><math><mi>μ</mi></math></span> can be directly deduced from the <em>curvature</em> of their trajectory curves when <span><math><mi>μ</mi></math></span> tends to zero. Such a result thus confirms the relationship between <em>curvature</em> and <em>energy function</em> for a certain class of differential systems already established in one of our previous contributions. Then, we state that the rate of change of the <em>energy function</em> of such <em>coarse systems</em> is equal to the scalar product of the <em>velocity vector field</em> and its first time derivative, i.e. the <em>acceleration vector field</em>. The comparison of these results with the so-called Frénet frame enables to prove that <em>energy function</em> is proportional to the normal component of the acceleration when <span><math><mi>μ</mi></math></span> tends to zero while the rate of change of the <em>energy function</em> is proportional to the tangential component of the acceleration at first order in <span><math><mi>μ</mi></math></span>. Two and three-dimensional examples are then used to emphasize these two main results.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116643"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy function of 2D and 3D coarse systems\",\"authors\":\"Jean-Marc Ginoux ,&nbsp;Riccardo Meucci ,&nbsp;Jaume Llibre ,&nbsp;Julien Clinton Sprott\",\"doi\":\"10.1016/j.chaos.2025.116643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, while using the <em>Flow Curvature Method</em> developed by one of us (JMG), we prove that the <em>energy function</em> of two and three-dimensional <em>coarse systems</em> involving a small parameter <span><math><mi>μ</mi></math></span> can be directly deduced from the <em>curvature</em> of their trajectory curves when <span><math><mi>μ</mi></math></span> tends to zero. Such a result thus confirms the relationship between <em>curvature</em> and <em>energy function</em> for a certain class of differential systems already established in one of our previous contributions. Then, we state that the rate of change of the <em>energy function</em> of such <em>coarse systems</em> is equal to the scalar product of the <em>velocity vector field</em> and its first time derivative, i.e. the <em>acceleration vector field</em>. The comparison of these results with the so-called Frénet frame enables to prove that <em>energy function</em> is proportional to the normal component of the acceleration when <span><math><mi>μ</mi></math></span> tends to zero while the rate of change of the <em>energy function</em> is proportional to the tangential component of the acceleration at first order in <span><math><mi>μ</mi></math></span>. Two and three-dimensional examples are then used to emphasize these two main results.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116643\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925006563\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006563","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用JMG提出的流动曲率法,证明了当μ趋于零时,二维和三维含小参数μ的粗系统的能量函数可以由其轨迹曲线的曲率直接推导出来。这样的结果证实了曲率和能量函数之间的关系对于某一类微分系统已经建立在我们以前的一个贡献。然后,我们声明这种粗糙系统的能量函数的变化率等于速度矢量场与其一阶导数即加速度矢量场的标量积。将这些结果与所谓的fr坐标系进行比较,可以证明当μ趋于零时,能量函数与加速度的法向分量成正比,而能量函数的变化率与一阶加速度的切向分量成正比。然后用二维和三维的例子来强调这两个主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy function of 2D and 3D coarse systems
In this work, while using the Flow Curvature Method developed by one of us (JMG), we prove that the energy function of two and three-dimensional coarse systems involving a small parameter μ can be directly deduced from the curvature of their trajectory curves when μ tends to zero. Such a result thus confirms the relationship between curvature and energy function for a certain class of differential systems already established in one of our previous contributions. Then, we state that the rate of change of the energy function of such coarse systems is equal to the scalar product of the velocity vector field and its first time derivative, i.e. the acceleration vector field. The comparison of these results with the so-called Frénet frame enables to prove that energy function is proportional to the normal component of the acceleration when μ tends to zero while the rate of change of the energy function is proportional to the tangential component of the acceleration at first order in μ. Two and three-dimensional examples are then used to emphasize these two main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信