Spyridon Christofilakos , Alina Blume , Avi Putri Pertiwi , Chengfa Benjamin Lee , Dimosthenis Traganos , Peter Reinartz
{"title":"遥感底栖生物栖息地空间明确不确定性量化的基于云的框架","authors":"Spyridon Christofilakos , Alina Blume , Avi Putri Pertiwi , Chengfa Benjamin Lee , Dimosthenis Traganos , Peter Reinartz","doi":"10.1016/j.jag.2025.104670","DOIUrl":null,"url":null,"abstract":"<div><div>The significant advances of cloud-based remote sensing frameworks have allowed researchers to develop large-scale analytics for better understanding, monitoring of, and decision-making around sensitive and valuable coastal ecosystems like seagrass meadows. However, an information gap related with the spatially-explicit accuracy of Machine Learning (ML) products has been identified. The goal of this study is to estimate the per pixel uncertainty of a Random Forest classification of four benthic habitats and exploit it to retrain the model through training data selection by bootstrapping and producing an ensemble model. The calculation of the spatially-explicit uncertainty is based on the Shannon Entropy equation and the probability values of a successful prediction according to the ML model. The remote sensing data for this study are sourced from the European Union Copernicus Sentinel-2 twin satellite system and Planet’s cubesat satellite constellation respectively, and have been processed and analyzed through the Google Earth Engine cloud-based platform. The national extent of The Bahamas and the regional extent of the Wakatobi archipelago in Indonesia comprise our study sites. Our results indicate the potential of the presented uncertainty workflow for optimizing the classification and the usefulness of the produced uncertainty map to aid policy-makers through our provided spatially-explicit accuracy metrics. More precisely in the case of the Bahamas, the percentile differences for seagrass user and producer accuracies are improved in the ranges of 1.16–4.77 % and 4.36–8.54 %, respectively, in comparison with a standard supervised classification. In conclusion, spatially-explicit uncertainty information can and should be used as unique and vital geospatial information suitable for ML classification optimization and as a tool for better decision-making and field expedition planning, and understanding of benthic ecosystems.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"141 ","pages":"Article 104670"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cloud-based framework for the quantification of the spatially-explicit uncertainty of remotely sensed benthic habitats\",\"authors\":\"Spyridon Christofilakos , Alina Blume , Avi Putri Pertiwi , Chengfa Benjamin Lee , Dimosthenis Traganos , Peter Reinartz\",\"doi\":\"10.1016/j.jag.2025.104670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The significant advances of cloud-based remote sensing frameworks have allowed researchers to develop large-scale analytics for better understanding, monitoring of, and decision-making around sensitive and valuable coastal ecosystems like seagrass meadows. However, an information gap related with the spatially-explicit accuracy of Machine Learning (ML) products has been identified. The goal of this study is to estimate the per pixel uncertainty of a Random Forest classification of four benthic habitats and exploit it to retrain the model through training data selection by bootstrapping and producing an ensemble model. The calculation of the spatially-explicit uncertainty is based on the Shannon Entropy equation and the probability values of a successful prediction according to the ML model. The remote sensing data for this study are sourced from the European Union Copernicus Sentinel-2 twin satellite system and Planet’s cubesat satellite constellation respectively, and have been processed and analyzed through the Google Earth Engine cloud-based platform. The national extent of The Bahamas and the regional extent of the Wakatobi archipelago in Indonesia comprise our study sites. Our results indicate the potential of the presented uncertainty workflow for optimizing the classification and the usefulness of the produced uncertainty map to aid policy-makers through our provided spatially-explicit accuracy metrics. More precisely in the case of the Bahamas, the percentile differences for seagrass user and producer accuracies are improved in the ranges of 1.16–4.77 % and 4.36–8.54 %, respectively, in comparison with a standard supervised classification. In conclusion, spatially-explicit uncertainty information can and should be used as unique and vital geospatial information suitable for ML classification optimization and as a tool for better decision-making and field expedition planning, and understanding of benthic ecosystems.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"141 \",\"pages\":\"Article 104670\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843225003176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225003176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
A cloud-based framework for the quantification of the spatially-explicit uncertainty of remotely sensed benthic habitats
The significant advances of cloud-based remote sensing frameworks have allowed researchers to develop large-scale analytics for better understanding, monitoring of, and decision-making around sensitive and valuable coastal ecosystems like seagrass meadows. However, an information gap related with the spatially-explicit accuracy of Machine Learning (ML) products has been identified. The goal of this study is to estimate the per pixel uncertainty of a Random Forest classification of four benthic habitats and exploit it to retrain the model through training data selection by bootstrapping and producing an ensemble model. The calculation of the spatially-explicit uncertainty is based on the Shannon Entropy equation and the probability values of a successful prediction according to the ML model. The remote sensing data for this study are sourced from the European Union Copernicus Sentinel-2 twin satellite system and Planet’s cubesat satellite constellation respectively, and have been processed and analyzed through the Google Earth Engine cloud-based platform. The national extent of The Bahamas and the regional extent of the Wakatobi archipelago in Indonesia comprise our study sites. Our results indicate the potential of the presented uncertainty workflow for optimizing the classification and the usefulness of the produced uncertainty map to aid policy-makers through our provided spatially-explicit accuracy metrics. More precisely in the case of the Bahamas, the percentile differences for seagrass user and producer accuracies are improved in the ranges of 1.16–4.77 % and 4.36–8.54 %, respectively, in comparison with a standard supervised classification. In conclusion, spatially-explicit uncertainty information can and should be used as unique and vital geospatial information suitable for ML classification optimization and as a tool for better decision-making and field expedition planning, and understanding of benthic ecosystems.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.