纳米技术和机器学习:精密医学进步的有希望的融合

Shuaibu Saidu Musa , Adamu Muhammad Ibrahim , Muhammad Yasir Alhassan , Abubakar Hafs Musa , Abdulrahman Garba Jibo , Auwal Rabiu Auwal , Olalekan John Okesanya , Zhinya Kawa Othman , Muhammad Sadiq Abubakar , Mohamed Mustaf Ahmed , Carina Joane V. Barroso , Abraham Fessehaye Sium , Manuel B. Garcia , James Brian Flores , Adamu Safiyanu Maikifi , M.B.N. Kouwenhoven , Don Eliseo Lucero-Prisno
{"title":"纳米技术和机器学习:精密医学进步的有希望的融合","authors":"Shuaibu Saidu Musa ,&nbsp;Adamu Muhammad Ibrahim ,&nbsp;Muhammad Yasir Alhassan ,&nbsp;Abubakar Hafs Musa ,&nbsp;Abdulrahman Garba Jibo ,&nbsp;Auwal Rabiu Auwal ,&nbsp;Olalekan John Okesanya ,&nbsp;Zhinya Kawa Othman ,&nbsp;Muhammad Sadiq Abubakar ,&nbsp;Mohamed Mustaf Ahmed ,&nbsp;Carina Joane V. Barroso ,&nbsp;Abraham Fessehaye Sium ,&nbsp;Manuel B. Garcia ,&nbsp;James Brian Flores ,&nbsp;Adamu Safiyanu Maikifi ,&nbsp;M.B.N. Kouwenhoven ,&nbsp;Don Eliseo Lucero-Prisno","doi":"10.1016/j.ibmed.2025.100267","DOIUrl":null,"url":null,"abstract":"<div><div>The fusion of molecular-scale engineering in nanotechnology with machine learning (ML) analytics is reshaping the field of precision medicine. Nanoparticles enable ultrasensitive diagnostics, targeted drug and gene delivery, and high-resolution imaging, whereas ML models mine vast multimodal datasets to optimize nanoparticle design, enhance predictive accuracy, and personalize treatment in real-time. Recent breakthroughs include ML-guided formulations of lipid, polymeric, and inorganic carriers that cross biological barriers; AI-enhanced nanosensors that flag early disease from breath, sweat, or blood; and nanotheranostic agents that simultaneously track and treat tumors. Comparative insights into Retrieval-Augmented Generation and supervised learning pipelines reveal distinct advantages for nanodevice engineering across diverse data environments. An expanded focus on explainable AI tools, such as SHAP, LIME, Grad-CAM, and Integrated Gradients, highlights their role in enhancing transparency, trust, and interpretability in nano-enabled clinical decisions. A structured narrative review method was applied, and key ML model performances were synthesized to strengthen analytical clarity. Emerging biodegradable nanomaterials, autonomous micro-nanorobots, and hybrid lab-on-chip systems promise faster point-of-care decisions but raise pressing questions about data integrity, interpretability, scalability, regulation, ethics, and equitable access. Addressing these hurdles will require robust data standards, privacy safeguards, interdisciplinary R&amp;D networks, and flexible approval pathways to translate bench advances into bedside benefits for patients. This review synthesizes the current landscape, critical challenges, and future directions at the intersection of nanotechnology and ML in precision medicine.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100267"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology and machine learning: a promising confluence for the advancement of precision medicine\",\"authors\":\"Shuaibu Saidu Musa ,&nbsp;Adamu Muhammad Ibrahim ,&nbsp;Muhammad Yasir Alhassan ,&nbsp;Abubakar Hafs Musa ,&nbsp;Abdulrahman Garba Jibo ,&nbsp;Auwal Rabiu Auwal ,&nbsp;Olalekan John Okesanya ,&nbsp;Zhinya Kawa Othman ,&nbsp;Muhammad Sadiq Abubakar ,&nbsp;Mohamed Mustaf Ahmed ,&nbsp;Carina Joane V. Barroso ,&nbsp;Abraham Fessehaye Sium ,&nbsp;Manuel B. Garcia ,&nbsp;James Brian Flores ,&nbsp;Adamu Safiyanu Maikifi ,&nbsp;M.B.N. Kouwenhoven ,&nbsp;Don Eliseo Lucero-Prisno\",\"doi\":\"10.1016/j.ibmed.2025.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fusion of molecular-scale engineering in nanotechnology with machine learning (ML) analytics is reshaping the field of precision medicine. Nanoparticles enable ultrasensitive diagnostics, targeted drug and gene delivery, and high-resolution imaging, whereas ML models mine vast multimodal datasets to optimize nanoparticle design, enhance predictive accuracy, and personalize treatment in real-time. Recent breakthroughs include ML-guided formulations of lipid, polymeric, and inorganic carriers that cross biological barriers; AI-enhanced nanosensors that flag early disease from breath, sweat, or blood; and nanotheranostic agents that simultaneously track and treat tumors. Comparative insights into Retrieval-Augmented Generation and supervised learning pipelines reveal distinct advantages for nanodevice engineering across diverse data environments. An expanded focus on explainable AI tools, such as SHAP, LIME, Grad-CAM, and Integrated Gradients, highlights their role in enhancing transparency, trust, and interpretability in nano-enabled clinical decisions. A structured narrative review method was applied, and key ML model performances were synthesized to strengthen analytical clarity. Emerging biodegradable nanomaterials, autonomous micro-nanorobots, and hybrid lab-on-chip systems promise faster point-of-care decisions but raise pressing questions about data integrity, interpretability, scalability, regulation, ethics, and equitable access. Addressing these hurdles will require robust data standards, privacy safeguards, interdisciplinary R&amp;D networks, and flexible approval pathways to translate bench advances into bedside benefits for patients. This review synthesizes the current landscape, critical challenges, and future directions at the intersection of nanotechnology and ML in precision medicine.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"12 \",\"pages\":\"Article 100267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术中的分子尺度工程与机器学习(ML)分析的融合正在重塑精准医学领域。纳米颗粒可以实现超灵敏的诊断、靶向药物和基因传递以及高分辨率成像,而ML模型可以挖掘大量的多模态数据集来优化纳米颗粒设计,提高预测准确性,并实时个性化治疗。最近的突破包括:ml引导的脂质、聚合物和无机载体跨越生物屏障的配方;人工智能增强的纳米传感器可以从呼吸、汗液或血液中发现早期疾病;纳米治疗剂可以同时追踪和治疗肿瘤。对检索增强生成和监督学习管道的比较研究揭示了纳米器件工程在不同数据环境中的独特优势。进一步关注可解释的人工智能工具,如SHAP、LIME、Grad-CAM和集成梯度,强调了它们在提高纳米临床决策的透明度、信任和可解释性方面的作用。采用结构化的叙事回顾方法,综合ML模型的关键性能,增强分析的清晰度。新兴的可生物降解纳米材料、自主微纳米机器人和混合芯片实验室系统承诺更快地做出护理点决策,但也提出了关于数据完整性、可解释性、可扩展性、监管、伦理和公平获取的紧迫问题。解决这些障碍需要健全的数据标准、隐私保护、跨学科研发网络和灵活的审批途径,才能将实验成果转化为患者的临床益处。这篇综述综合了纳米技术和机器学习在精准医学领域交叉的现状、关键挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanotechnology and machine learning: a promising confluence for the advancement of precision medicine
The fusion of molecular-scale engineering in nanotechnology with machine learning (ML) analytics is reshaping the field of precision medicine. Nanoparticles enable ultrasensitive diagnostics, targeted drug and gene delivery, and high-resolution imaging, whereas ML models mine vast multimodal datasets to optimize nanoparticle design, enhance predictive accuracy, and personalize treatment in real-time. Recent breakthroughs include ML-guided formulations of lipid, polymeric, and inorganic carriers that cross biological barriers; AI-enhanced nanosensors that flag early disease from breath, sweat, or blood; and nanotheranostic agents that simultaneously track and treat tumors. Comparative insights into Retrieval-Augmented Generation and supervised learning pipelines reveal distinct advantages for nanodevice engineering across diverse data environments. An expanded focus on explainable AI tools, such as SHAP, LIME, Grad-CAM, and Integrated Gradients, highlights their role in enhancing transparency, trust, and interpretability in nano-enabled clinical decisions. A structured narrative review method was applied, and key ML model performances were synthesized to strengthen analytical clarity. Emerging biodegradable nanomaterials, autonomous micro-nanorobots, and hybrid lab-on-chip systems promise faster point-of-care decisions but raise pressing questions about data integrity, interpretability, scalability, regulation, ethics, and equitable access. Addressing these hurdles will require robust data standards, privacy safeguards, interdisciplinary R&D networks, and flexible approval pathways to translate bench advances into bedside benefits for patients. This review synthesizes the current landscape, critical challenges, and future directions at the intersection of nanotechnology and ML in precision medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信