基于圆形截锥结构的Ti3C2Tx MXene超宽带完美光吸收器横跨可见光至近红外区域

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Bingzhen Li, Qingqing Wu, Fangyuan Li, Yan Li, Xiao Zhou, Songlin Yu, Wangjun Ren, Jijun Wang
{"title":"基于圆形截锥结构的Ti3C2Tx MXene超宽带完美光吸收器横跨可见光至近红外区域","authors":"Bingzhen Li,&nbsp;Qingqing Wu,&nbsp;Fangyuan Li,&nbsp;Yan Li,&nbsp;Xiao Zhou,&nbsp;Songlin Yu,&nbsp;Wangjun Ren,&nbsp;Jijun Wang","doi":"10.1016/j.physleta.2025.130742","DOIUrl":null,"url":null,"abstract":"<div><div>Broadband perfect light absorbers (PLAs) are critical for advancing technologies such as stealth systems, thermal photovoltaics, and optical imaging, where efficient, spectrum-wide light absorption is essential. Here, we propose a novel, low-cost PLA design featuring a circular truncated cone (CTC) nanostructure composed of Ti₃C₂T<sub>x</sub> MXene. Finite element method (FEM) simulations reveal exceptional performance, with over 99.5 % average absorbance across 280–1623 nm and a 141.1 % relative bandwidth, validated by equivalent circuit modeling (ECM). This efficiency stems from synergistic interactions between guided mode excitation, localized surface plasmon resonances (LSPRs), and intrinsic losses within the CTC geometry. The design maintains &gt;99 % absorption, exhibiting polarization- and angle-insensitivity for transverse electric/magnetic modes, while geometric tunability enables customization for diverse applications, including solar harvesting, thermoelectrics, and thermal imaging. This work advances PLA technology by delivering ultra-broadband, robust, and adaptable absorption, addressing key limitations in existing designs.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"554 ","pages":"Article 130742"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-broadband perfect light absorber based on circular truncated cone structure Ti3C2Tx MXene across the visible to near-infrared region\",\"authors\":\"Bingzhen Li,&nbsp;Qingqing Wu,&nbsp;Fangyuan Li,&nbsp;Yan Li,&nbsp;Xiao Zhou,&nbsp;Songlin Yu,&nbsp;Wangjun Ren,&nbsp;Jijun Wang\",\"doi\":\"10.1016/j.physleta.2025.130742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Broadband perfect light absorbers (PLAs) are critical for advancing technologies such as stealth systems, thermal photovoltaics, and optical imaging, where efficient, spectrum-wide light absorption is essential. Here, we propose a novel, low-cost PLA design featuring a circular truncated cone (CTC) nanostructure composed of Ti₃C₂T<sub>x</sub> MXene. Finite element method (FEM) simulations reveal exceptional performance, with over 99.5 % average absorbance across 280–1623 nm and a 141.1 % relative bandwidth, validated by equivalent circuit modeling (ECM). This efficiency stems from synergistic interactions between guided mode excitation, localized surface plasmon resonances (LSPRs), and intrinsic losses within the CTC geometry. The design maintains &gt;99 % absorption, exhibiting polarization- and angle-insensitivity for transverse electric/magnetic modes, while geometric tunability enables customization for diverse applications, including solar harvesting, thermoelectrics, and thermal imaging. This work advances PLA technology by delivering ultra-broadband, robust, and adaptable absorption, addressing key limitations in existing designs.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"554 \",\"pages\":\"Article 130742\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125005225\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125005225","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

宽带完美光吸收器(pla)对于隐身系统,热光伏和光学成像等先进技术至关重要,其中高效,全光谱光吸收是必不可少的。在这里,我们提出了一种新颖的、低成本的PLA设计,其特点是由Ti₃C₂Tx MXene组成的圆形截锥(CTC)纳米结构。通过等效电路建模(ECM)验证,有限元方法(FEM)仿真显示了优异的性能,在280-1623 nm范围内平均吸光度超过99.5%,相对带宽为141.1%。这种效率源于引导模式激发、局部表面等离子体共振(LSPRs)和CTC几何结构内的本征损耗之间的协同相互作用。该设计保持99%的吸收率,对横向电/磁模式表现出极化和角度不敏感,而几何可调性使各种应用的定制化,包括太阳能收集、热电和热成像。这项工作通过提供超宽带、鲁棒性和适应性吸收来推进PLA技术,解决了现有设计中的关键限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-broadband perfect light absorber based on circular truncated cone structure Ti3C2Tx MXene across the visible to near-infrared region
Broadband perfect light absorbers (PLAs) are critical for advancing technologies such as stealth systems, thermal photovoltaics, and optical imaging, where efficient, spectrum-wide light absorption is essential. Here, we propose a novel, low-cost PLA design featuring a circular truncated cone (CTC) nanostructure composed of Ti₃C₂Tx MXene. Finite element method (FEM) simulations reveal exceptional performance, with over 99.5 % average absorbance across 280–1623 nm and a 141.1 % relative bandwidth, validated by equivalent circuit modeling (ECM). This efficiency stems from synergistic interactions between guided mode excitation, localized surface plasmon resonances (LSPRs), and intrinsic losses within the CTC geometry. The design maintains >99 % absorption, exhibiting polarization- and angle-insensitivity for transverse electric/magnetic modes, while geometric tunability enables customization for diverse applications, including solar harvesting, thermoelectrics, and thermal imaging. This work advances PLA technology by delivering ultra-broadband, robust, and adaptable absorption, addressing key limitations in existing designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信