基于扩展先验分布的累积失效概率函数贝叶斯公式方法

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yingshi Hu , Zhenzhou Lu , Jingyu Lei , Ning Wei , Jinghan Hu , Wenhao Li , Jing Lin
{"title":"基于扩展先验分布的累积失效概率函数贝叶斯公式方法","authors":"Yingshi Hu ,&nbsp;Zhenzhou Lu ,&nbsp;Jingyu Lei ,&nbsp;Ning Wei ,&nbsp;Jinghan Hu ,&nbsp;Wenhao Li ,&nbsp;Jing Lin","doi":"10.1016/j.eswa.2025.128551","DOIUrl":null,"url":null,"abstract":"<div><div>Since the cumulative time-dependent failure probability function (CTFPF) can provide the time-dependent failure probability (TFP) with respect to distribution parameters and upper bound of time interval (UBTI), estimating CTFPF can provide great convenience for solving time-dependent reliability-based design optimization. However, the existing direct Monte Carlo simulation method (MCS) for estimating CTFPF is time-consuming. Therefore, this paper proposes an extended prior distribution-based Bayes formula method (EPD-Bayes) to improve the efficiency and accuracy of estimating CTFPF. The EPD-Bayes adopts the Bayes formula to transform the focus of estimating CTFPF into efficiently estimating the time-dependent failure domain under different UBTI. Then, a first failure instant (FFI) learning function combined with adaptive candidate sample pool reduction technology (ACSPRT) is established to efficiently obtain the time-dependent failure domain under different UBTI. At the meanwhile, to avoid the boundary effect of kernel density estimation method (KDE) in estimating the conditional probability density function (PDF) of distribution parameters, an extended prior distribution is proposed to improve the accuracy of estimating the conditional PDF at the boundary of distribution parameter space. The results of three examples verify the advantage of the proposed EPD-Bayes.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"291 ","pages":"Article 128551"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended prior distribution-based Bayes formula method for cumulative time-dependent failure probability function\",\"authors\":\"Yingshi Hu ,&nbsp;Zhenzhou Lu ,&nbsp;Jingyu Lei ,&nbsp;Ning Wei ,&nbsp;Jinghan Hu ,&nbsp;Wenhao Li ,&nbsp;Jing Lin\",\"doi\":\"10.1016/j.eswa.2025.128551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since the cumulative time-dependent failure probability function (CTFPF) can provide the time-dependent failure probability (TFP) with respect to distribution parameters and upper bound of time interval (UBTI), estimating CTFPF can provide great convenience for solving time-dependent reliability-based design optimization. However, the existing direct Monte Carlo simulation method (MCS) for estimating CTFPF is time-consuming. Therefore, this paper proposes an extended prior distribution-based Bayes formula method (EPD-Bayes) to improve the efficiency and accuracy of estimating CTFPF. The EPD-Bayes adopts the Bayes formula to transform the focus of estimating CTFPF into efficiently estimating the time-dependent failure domain under different UBTI. Then, a first failure instant (FFI) learning function combined with adaptive candidate sample pool reduction technology (ACSPRT) is established to efficiently obtain the time-dependent failure domain under different UBTI. At the meanwhile, to avoid the boundary effect of kernel density estimation method (KDE) in estimating the conditional probability density function (PDF) of distribution parameters, an extended prior distribution is proposed to improve the accuracy of estimating the conditional PDF at the boundary of distribution parameter space. The results of three examples verify the advantage of the proposed EPD-Bayes.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"291 \",\"pages\":\"Article 128551\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425021700\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425021700","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于累积时变失效概率函数(CTFPF)可以提供相对于分布参数和时间区间上界的时变失效概率(TFP),因此估计CTFPF可以为求解时变可靠性设计优化提供极大的便利。然而,现有的直接蒙特卡罗模拟方法(MCS)估算CTFPF非常耗时。为此,本文提出了一种扩展的基于先验分布的贝叶斯公式方法(EPD-Bayes),以提高CTFPF估计的效率和精度。EPD-Bayes采用贝叶斯公式,将CTFPF的估计重点转化为对不同UBTI下随时间变化的失效域的有效估计。然后,结合自适应候选样本池缩减技术(ACSPRT)建立了第一失效瞬间(FFI)学习函数,有效地获得了不同UBTI下的随时间变化的失效域;同时,为了避免核密度估计方法(KDE)在估计分布参数的条件概率密度函数(PDF)时的边界效应,提出了一种扩展先验分布,提高了分布参数空间边界处估计条件概率密度函数的精度。三个算例的结果验证了所提出的EPD-Bayes的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extended prior distribution-based Bayes formula method for cumulative time-dependent failure probability function
Since the cumulative time-dependent failure probability function (CTFPF) can provide the time-dependent failure probability (TFP) with respect to distribution parameters and upper bound of time interval (UBTI), estimating CTFPF can provide great convenience for solving time-dependent reliability-based design optimization. However, the existing direct Monte Carlo simulation method (MCS) for estimating CTFPF is time-consuming. Therefore, this paper proposes an extended prior distribution-based Bayes formula method (EPD-Bayes) to improve the efficiency and accuracy of estimating CTFPF. The EPD-Bayes adopts the Bayes formula to transform the focus of estimating CTFPF into efficiently estimating the time-dependent failure domain under different UBTI. Then, a first failure instant (FFI) learning function combined with adaptive candidate sample pool reduction technology (ACSPRT) is established to efficiently obtain the time-dependent failure domain under different UBTI. At the meanwhile, to avoid the boundary effect of kernel density estimation method (KDE) in estimating the conditional probability density function (PDF) of distribution parameters, an extended prior distribution is proposed to improve the accuracy of estimating the conditional PDF at the boundary of distribution parameter space. The results of three examples verify the advantage of the proposed EPD-Bayes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信