使用密集传感器网络的羽流检测和排放量化潜力

Milan Y. Patel, Yishu Zhu, Anna R. Winter, Naomi G. Asimow and Ronald C. Cohen*, 
{"title":"使用密集传感器网络的羽流检测和排放量化潜力","authors":"Milan Y. Patel,&nbsp;Yishu Zhu,&nbsp;Anna R. Winter,&nbsp;Naomi G. Asimow and Ronald C. Cohen*,&nbsp;","doi":"10.1021/acsestair.5c0006910.1021/acsestair.5c00069","DOIUrl":null,"url":null,"abstract":"<p >Densely spaced sensor networks provide a unique opportunity for describing emissions from stationary and moving point sources and from intermittent events like fires or industrial flaring. As an example of what sensor networks can achieve, we describe quantification of emissions from a small urban fire in the Bay Area of California using the Berkeley Environmental Air-quality and CO<sub>2</sub> Network (BEACO<sub>2</sub>N), a dense air quality and greenhouse gas monitoring network. Pollutant enhancements are measured at multiple sites, and the ensemble of observations are fit to a 2-D Gaussian model to characterize the extent of dilution prior to observation and derive emissions at the location of the fire. Distinct approaches are used for calibration of the CO<sub>2</sub>, air quality gases, and PM<sub>2.5</sub> instruments. Consistency of the ratios at multiple locations downwind of the fire supports the precision of the network. We find that the fire emitted approximately 770 ± 30 kg of PM<sub>2.5</sub>, 70,000 ± 20,000 kg of CO<sub>2</sub>, 2500 ± 300 kg of CO, and 28 ± 9 kg of NO<sub><i>x</i></sub>. The emission ratios are in the range of typical wildland fires. Using this example, we explore the minimum plume emissions that could be observed and quantified by the network.</p><p >This study demonstrates the potential of an air quality and greenhouse gas monitoring network to detect plumes and quantify emissions from point sources.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 6","pages":"1099–1106 1099–1106"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.5c00069","citationCount":"0","resultStr":"{\"title\":\"Plume Detection and Emissions Quantification Potential Using a Dense Sensor Network\",\"authors\":\"Milan Y. Patel,&nbsp;Yishu Zhu,&nbsp;Anna R. Winter,&nbsp;Naomi G. Asimow and Ronald C. Cohen*,&nbsp;\",\"doi\":\"10.1021/acsestair.5c0006910.1021/acsestair.5c00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Densely spaced sensor networks provide a unique opportunity for describing emissions from stationary and moving point sources and from intermittent events like fires or industrial flaring. As an example of what sensor networks can achieve, we describe quantification of emissions from a small urban fire in the Bay Area of California using the Berkeley Environmental Air-quality and CO<sub>2</sub> Network (BEACO<sub>2</sub>N), a dense air quality and greenhouse gas monitoring network. Pollutant enhancements are measured at multiple sites, and the ensemble of observations are fit to a 2-D Gaussian model to characterize the extent of dilution prior to observation and derive emissions at the location of the fire. Distinct approaches are used for calibration of the CO<sub>2</sub>, air quality gases, and PM<sub>2.5</sub> instruments. Consistency of the ratios at multiple locations downwind of the fire supports the precision of the network. We find that the fire emitted approximately 770 ± 30 kg of PM<sub>2.5</sub>, 70,000 ± 20,000 kg of CO<sub>2</sub>, 2500 ± 300 kg of CO, and 28 ± 9 kg of NO<sub><i>x</i></sub>. The emission ratios are in the range of typical wildland fires. Using this example, we explore the minimum plume emissions that could be observed and quantified by the network.</p><p >This study demonstrates the potential of an air quality and greenhouse gas monitoring network to detect plumes and quantify emissions from point sources.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"2 6\",\"pages\":\"1099–1106 1099–1106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsestair.5c00069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.5c00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.5c00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密集分布的传感器网络为描述固定和移动点源以及火灾或工业燃烧等间歇性事件的排放提供了独特的机会。作为传感器网络可以实现的一个例子,我们使用伯克利环境空气质量和二氧化碳网络(BEACO2N)描述了加州湾区小型城市火灾的排放量量化,这是一个密集的空气质量和温室气体监测网络。在多个地点测量污染物增强,并将观测集合拟合为二维高斯模型,以表征观测前的稀释程度,并得出火灾地点的排放量。不同的方法用于校准二氧化碳、空气质量气体和PM2.5仪器。在火灾顺风处多个位置的比值一致性支持了网络的精度。我们发现,火灾排放了大约770±30千克PM2.5, 70,000±20,000千克CO2, 2500±300千克CO和28±9千克NOx。排放比在典型的野火范围内。通过这个例子,我们探索了网络可以观测和量化的最小羽流排放。这项研究证明了空气质量和温室气体监测网络在检测羽流和量化点源排放方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plume Detection and Emissions Quantification Potential Using a Dense Sensor Network

Densely spaced sensor networks provide a unique opportunity for describing emissions from stationary and moving point sources and from intermittent events like fires or industrial flaring. As an example of what sensor networks can achieve, we describe quantification of emissions from a small urban fire in the Bay Area of California using the Berkeley Environmental Air-quality and CO2 Network (BEACO2N), a dense air quality and greenhouse gas monitoring network. Pollutant enhancements are measured at multiple sites, and the ensemble of observations are fit to a 2-D Gaussian model to characterize the extent of dilution prior to observation and derive emissions at the location of the fire. Distinct approaches are used for calibration of the CO2, air quality gases, and PM2.5 instruments. Consistency of the ratios at multiple locations downwind of the fire supports the precision of the network. We find that the fire emitted approximately 770 ± 30 kg of PM2.5, 70,000 ± 20,000 kg of CO2, 2500 ± 300 kg of CO, and 28 ± 9 kg of NOx. The emission ratios are in the range of typical wildland fires. Using this example, we explore the minimum plume emissions that could be observed and quantified by the network.

This study demonstrates the potential of an air quality and greenhouse gas monitoring network to detect plumes and quantify emissions from point sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信