人工智能在优化水和废水修复电化学过程中的关键作用:最新进展综述

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Milad Mousazadehgavan*, Zeinab Hajalifard, Milad Basirifard, Shahabeddin Afsharghoochani, Sayedali Mirkhalafi, Işık Kabdaşlı*, Khalid Hashim and Ismini Nakouti, 
{"title":"人工智能在优化水和废水修复电化学过程中的关键作用:最新进展综述","authors":"Milad Mousazadehgavan*,&nbsp;Zeinab Hajalifard,&nbsp;Milad Basirifard,&nbsp;Shahabeddin Afsharghoochani,&nbsp;Sayedali Mirkhalafi,&nbsp;Işık Kabdaşlı*,&nbsp;Khalid Hashim and Ismini Nakouti,&nbsp;","doi":"10.1021/acsestwater.5c0023810.1021/acsestwater.5c00238","DOIUrl":null,"url":null,"abstract":"<p >Artificial intelligence (AI) is transforming electrochemical water and wastewater treatment by enhancing efficiency, predictive accuracy, and process control. However, a comprehensive evaluation of AI models in optimizing electrochemical processes for pollutant removal is still lacking. This review addresses this gap by systematically analyzing AI applications in electrocoagulation (EC), electrooxidation (EO), electro-Fenton (EF), and electrodialysis (ED). Focusing on key advances and parameter optimization, it highlights how AI-driven models improve removal efficiency by capturing complex nonlinear interactions among variables such as current density, pH, electrode material, electrolyte composition, and pollutant concentration. Recent studies have notably shown that artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) have achieved <i>R</i><sup>2</sup> values above 0.99 in EC and EO processes, outperforming traditional models. Hybrid AI approaches like ANN-GA and ANFIS-ACO have further optimized catalyst dosage and ion migration in EF and ED. While AI has demonstrated remarkable potential, challenges such as limited data availability, model interpretability, and real-world implementation remain significant obstacles. Integrating AI with mechanistic modeling and real-time monitoring may overcome these barriers and enable autonomous, energy-efficient treatment systems. This Perspective offers critical insights into current progress and future opportunities, underscoring the role of intelligent optimization in advancing sustainable and scalable electrochemical water treatment technologies.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 6","pages":"2793–2811 2793–2811"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestwater.5c00238","citationCount":"0","resultStr":"{\"title\":\"The Critical Role of Artificial Intelligence in Optimizing Electrochemical Processes for Water and Wastewater Remediation: A State-of-the-Art Review\",\"authors\":\"Milad Mousazadehgavan*,&nbsp;Zeinab Hajalifard,&nbsp;Milad Basirifard,&nbsp;Shahabeddin Afsharghoochani,&nbsp;Sayedali Mirkhalafi,&nbsp;Işık Kabdaşlı*,&nbsp;Khalid Hashim and Ismini Nakouti,&nbsp;\",\"doi\":\"10.1021/acsestwater.5c0023810.1021/acsestwater.5c00238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Artificial intelligence (AI) is transforming electrochemical water and wastewater treatment by enhancing efficiency, predictive accuracy, and process control. However, a comprehensive evaluation of AI models in optimizing electrochemical processes for pollutant removal is still lacking. This review addresses this gap by systematically analyzing AI applications in electrocoagulation (EC), electrooxidation (EO), electro-Fenton (EF), and electrodialysis (ED). Focusing on key advances and parameter optimization, it highlights how AI-driven models improve removal efficiency by capturing complex nonlinear interactions among variables such as current density, pH, electrode material, electrolyte composition, and pollutant concentration. Recent studies have notably shown that artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) have achieved <i>R</i><sup>2</sup> values above 0.99 in EC and EO processes, outperforming traditional models. Hybrid AI approaches like ANN-GA and ANFIS-ACO have further optimized catalyst dosage and ion migration in EF and ED. While AI has demonstrated remarkable potential, challenges such as limited data availability, model interpretability, and real-world implementation remain significant obstacles. Integrating AI with mechanistic modeling and real-time monitoring may overcome these barriers and enable autonomous, energy-efficient treatment systems. This Perspective offers critical insights into current progress and future opportunities, underscoring the role of intelligent optimization in advancing sustainable and scalable electrochemical water treatment technologies.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"5 6\",\"pages\":\"2793–2811 2793–2811\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsestwater.5c00238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.5c00238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.5c00238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)正在通过提高效率、预测准确性和过程控制来改变电化学水和废水处理。然而,人工智能模型在优化电化学去除污染物过程中的综合评价仍然缺乏。本文通过系统分析人工智能在电凝(EC)、电氧化(EO)、电fenton (EF)和电渗析(ED)中的应用来弥补这一空白。重点关注关键进展和参数优化,重点介绍了人工智能驱动的模型如何通过捕获电流密度、pH、电极材料、电解质成分和污染物浓度等变量之间复杂的非线性相互作用来提高去除效率。最近的研究表明,人工神经网络(ann)和自适应神经模糊推理系统(ANFIS)在EC和EO过程中的R2值超过0.99,优于传统模型。像ANN-GA和ANFIS-ACO这样的混合人工智能方法进一步优化了EF和ED中的催化剂用量和离子迁移。尽管人工智能已经显示出巨大的潜力,但数据可用性有限、模型可解释性有限以及在现实世界中的应用等挑战仍然是重大障碍。将人工智能与机械建模和实时监测相结合,可以克服这些障碍,实现自主、节能的处理系统。该展望为当前进展和未来机遇提供了重要见解,强调了智能优化在推进可持续和可扩展的电化学水处理技术中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Critical Role of Artificial Intelligence in Optimizing Electrochemical Processes for Water and Wastewater Remediation: A State-of-the-Art Review

Artificial intelligence (AI) is transforming electrochemical water and wastewater treatment by enhancing efficiency, predictive accuracy, and process control. However, a comprehensive evaluation of AI models in optimizing electrochemical processes for pollutant removal is still lacking. This review addresses this gap by systematically analyzing AI applications in electrocoagulation (EC), electrooxidation (EO), electro-Fenton (EF), and electrodialysis (ED). Focusing on key advances and parameter optimization, it highlights how AI-driven models improve removal efficiency by capturing complex nonlinear interactions among variables such as current density, pH, electrode material, electrolyte composition, and pollutant concentration. Recent studies have notably shown that artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) have achieved R2 values above 0.99 in EC and EO processes, outperforming traditional models. Hybrid AI approaches like ANN-GA and ANFIS-ACO have further optimized catalyst dosage and ion migration in EF and ED. While AI has demonstrated remarkable potential, challenges such as limited data availability, model interpretability, and real-world implementation remain significant obstacles. Integrating AI with mechanistic modeling and real-time monitoring may overcome these barriers and enable autonomous, energy-efficient treatment systems. This Perspective offers critical insights into current progress and future opportunities, underscoring the role of intelligent optimization in advancing sustainable and scalable electrochemical water treatment technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信