Andrew Kristof, Krithika Karunakaran, Christopher Allen, Paula Mizote, Sophie Briggs, Zixin Jian, Patrick Nash, John Blazeck
{"title":"用于高效哺乳动物基因调控的新型CRISPRi工程阻遏物","authors":"Andrew Kristof, Krithika Karunakaran, Christopher Allen, Paula Mizote, Sophie Briggs, Zixin Jian, Patrick Nash, John Blazeck","doi":"10.1186/s13059-025-03640-4","DOIUrl":null,"url":null,"abstract":"CRISPR interference (CRISPRi), the repurposing of the RNA-guided endonuclease dCas9 as a programmable transcriptional repressor, allows highly specific repression (knockdown) of gene expression. CRISPRi platforms can often have incomplete knockdown, performance variability across cell lines and gene targets, and inconsistencies dependent on the guide RNA sequence employed. Here, we explore the combination of novel repressor domains with strong Krüppel-associated box (KRAB) repressors, screening > 100 bipartite and tripartite fusion proteins for their ability to reduce gene expression as CRISPRi effectors. We show that these novel repressor fusions have reduced dependence on guide RNA sequences, better slow cell growth when used to knock down expression of essential genes, and function in either fusion or scaffold modalities. Furthermore, we isolate and characterize a particularly effective CRISPRi platform, dCas9-ZIM3(KRAB)-MeCP2(t), which shows improved gene repression of endogenous targets both at the transcript and protein level across several cell lines and when deployed in genome-wide screens. We posit that these novel repressor fusions can enhance the reproducibility and utility of CRISPRi in mammalian cells.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"92 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering novel CRISPRi repressors for highly efficient mammalian gene regulation\",\"authors\":\"Andrew Kristof, Krithika Karunakaran, Christopher Allen, Paula Mizote, Sophie Briggs, Zixin Jian, Patrick Nash, John Blazeck\",\"doi\":\"10.1186/s13059-025-03640-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRISPR interference (CRISPRi), the repurposing of the RNA-guided endonuclease dCas9 as a programmable transcriptional repressor, allows highly specific repression (knockdown) of gene expression. CRISPRi platforms can often have incomplete knockdown, performance variability across cell lines and gene targets, and inconsistencies dependent on the guide RNA sequence employed. Here, we explore the combination of novel repressor domains with strong Krüppel-associated box (KRAB) repressors, screening > 100 bipartite and tripartite fusion proteins for their ability to reduce gene expression as CRISPRi effectors. We show that these novel repressor fusions have reduced dependence on guide RNA sequences, better slow cell growth when used to knock down expression of essential genes, and function in either fusion or scaffold modalities. Furthermore, we isolate and characterize a particularly effective CRISPRi platform, dCas9-ZIM3(KRAB)-MeCP2(t), which shows improved gene repression of endogenous targets both at the transcript and protein level across several cell lines and when deployed in genome-wide screens. We posit that these novel repressor fusions can enhance the reproducibility and utility of CRISPRi in mammalian cells.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03640-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03640-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Engineering novel CRISPRi repressors for highly efficient mammalian gene regulation
CRISPR interference (CRISPRi), the repurposing of the RNA-guided endonuclease dCas9 as a programmable transcriptional repressor, allows highly specific repression (knockdown) of gene expression. CRISPRi platforms can often have incomplete knockdown, performance variability across cell lines and gene targets, and inconsistencies dependent on the guide RNA sequence employed. Here, we explore the combination of novel repressor domains with strong Krüppel-associated box (KRAB) repressors, screening > 100 bipartite and tripartite fusion proteins for their ability to reduce gene expression as CRISPRi effectors. We show that these novel repressor fusions have reduced dependence on guide RNA sequences, better slow cell growth when used to knock down expression of essential genes, and function in either fusion or scaffold modalities. Furthermore, we isolate and characterize a particularly effective CRISPRi platform, dCas9-ZIM3(KRAB)-MeCP2(t), which shows improved gene repression of endogenous targets both at the transcript and protein level across several cell lines and when deployed in genome-wide screens. We posit that these novel repressor fusions can enhance the reproducibility and utility of CRISPRi in mammalian cells.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.