空位缺陷对Cs3Cu2I5闪烁体电子和光学性质影响的第一性原理研究

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yuming Li, Yang Liu*, Xuesong Li, Jianxi Yao and Xiaoping Ouyang, 
{"title":"空位缺陷对Cs3Cu2I5闪烁体电子和光学性质影响的第一性原理研究","authors":"Yuming Li,&nbsp;Yang Liu*,&nbsp;Xuesong Li,&nbsp;Jianxi Yao and Xiaoping Ouyang,&nbsp;","doi":"10.1021/acs.jpcc.5c00864","DOIUrl":null,"url":null,"abstract":"<p >Lead-free copper-based halide perovskite Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> crystals have been recognized as a highly promising material in the field of scintillator materials due to their high quantum yield and fast decay characteristics. Their exceptional optical properties and environmental stability render them highly advantageous for gamma and X-ray detection applications, showcasing significant potential for practical use. To conduct a comprehensive analysis of the impact of irradiation defects on the luminescent performance of Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> scintillators and their physical mechanisms, this study employs first-principles methods, focusing on the effects of vacancy defects induced by irradiation on the electronic structure and optical properties of Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> crystals. The research finds that Cs and Cu vacancy defects introduce shallow energy levels within the material’s bandgap, thereby expanding the luminescent pathways of the crystal and significantly enhancing the radiative recombination rate. In contrast, I vacancy defects create deep energy levels in the bandgap, functioning as nonradiative recombination centers, thereby suppressing luminescent performance. Furthermore, the presence of I vacancy defects exacerbates the self-absorption of visible light in Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> scintillators, resulting in a diminished optical signal reaching the photomultiplier tube, and consequently affecting the overall detection efficiency of the scintillator detector. This study reveals the microscopic mechanisms of damage to Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> scintillators under high-energy radiation, offering significant theoretical insights for performance optimization and damage protection in practical applications.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 25","pages":"11583–11592"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Vacancy-Defect on the Electronic and Optical Properties of Cs3Cu2I5 Scintillators: A First-Principles Study\",\"authors\":\"Yuming Li,&nbsp;Yang Liu*,&nbsp;Xuesong Li,&nbsp;Jianxi Yao and Xiaoping Ouyang,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c00864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lead-free copper-based halide perovskite Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> crystals have been recognized as a highly promising material in the field of scintillator materials due to their high quantum yield and fast decay characteristics. Their exceptional optical properties and environmental stability render them highly advantageous for gamma and X-ray detection applications, showcasing significant potential for practical use. To conduct a comprehensive analysis of the impact of irradiation defects on the luminescent performance of Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> scintillators and their physical mechanisms, this study employs first-principles methods, focusing on the effects of vacancy defects induced by irradiation on the electronic structure and optical properties of Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> crystals. The research finds that Cs and Cu vacancy defects introduce shallow energy levels within the material’s bandgap, thereby expanding the luminescent pathways of the crystal and significantly enhancing the radiative recombination rate. In contrast, I vacancy defects create deep energy levels in the bandgap, functioning as nonradiative recombination centers, thereby suppressing luminescent performance. Furthermore, the presence of I vacancy defects exacerbates the self-absorption of visible light in Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> scintillators, resulting in a diminished optical signal reaching the photomultiplier tube, and consequently affecting the overall detection efficiency of the scintillator detector. This study reveals the microscopic mechanisms of damage to Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> scintillators under high-energy radiation, offering significant theoretical insights for performance optimization and damage protection in practical applications.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 25\",\"pages\":\"11583–11592\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c00864\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c00864","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

无铅铜基卤化钙钛矿Cs3Cu2I5晶体由于其高量子产率和快速衰减的特点,在闪烁材料领域被认为是一种非常有前途的材料。其优异的光学性能和环境稳定性使其在伽马和x射线探测应用中非常有利,显示出实际应用的巨大潜力。为了全面分析辐照缺陷对Cs3Cu2I5闪烁体发光性能的影响及其物理机制,本研究采用第一性原理方法,重点研究辐照诱导的空位缺陷对Cs3Cu2I5晶体电子结构和光学性质的影响。研究发现,Cs和Cu空位缺陷在材料带隙内引入了浅能级,从而扩展了晶体的发光路径,显著提高了辐射复合率。相比之下,I空位缺陷在带隙中产生深能级,作为非辐射复合中心,从而抑制发光性能。此外,I空位缺陷的存在加剧了可见光在Cs3Cu2I5闪烁体中的自吸收,导致到达光电倍增管的光信号减弱,从而影响了闪烁体探测器的整体探测效率。本研究揭示了高能辐射下Cs3Cu2I5闪烁体损伤的微观机理,为实际应用中的性能优化和损伤防护提供了重要的理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Vacancy-Defect on the Electronic and Optical Properties of Cs3Cu2I5 Scintillators: A First-Principles Study

Effect of Vacancy-Defect on the Electronic and Optical Properties of Cs3Cu2I5 Scintillators: A First-Principles Study

Effect of Vacancy-Defect on the Electronic and Optical Properties of Cs3Cu2I5 Scintillators: A First-Principles Study

Lead-free copper-based halide perovskite Cs3Cu2I5 crystals have been recognized as a highly promising material in the field of scintillator materials due to their high quantum yield and fast decay characteristics. Their exceptional optical properties and environmental stability render them highly advantageous for gamma and X-ray detection applications, showcasing significant potential for practical use. To conduct a comprehensive analysis of the impact of irradiation defects on the luminescent performance of Cs3Cu2I5 scintillators and their physical mechanisms, this study employs first-principles methods, focusing on the effects of vacancy defects induced by irradiation on the electronic structure and optical properties of Cs3Cu2I5 crystals. The research finds that Cs and Cu vacancy defects introduce shallow energy levels within the material’s bandgap, thereby expanding the luminescent pathways of the crystal and significantly enhancing the radiative recombination rate. In contrast, I vacancy defects create deep energy levels in the bandgap, functioning as nonradiative recombination centers, thereby suppressing luminescent performance. Furthermore, the presence of I vacancy defects exacerbates the self-absorption of visible light in Cs3Cu2I5 scintillators, resulting in a diminished optical signal reaching the photomultiplier tube, and consequently affecting the overall detection efficiency of the scintillator detector. This study reveals the microscopic mechanisms of damage to Cs3Cu2I5 scintillators under high-energy radiation, offering significant theoretical insights for performance optimization and damage protection in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信