射频应用中基于芯片的2.5 d集成电路的传输信道和匹配网络设计策略

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Changle Zhi;Gang Dong;Deguang Yang;Xin Luo;Junpeng Yao;Daihang Liu;Zhangming Zhu
{"title":"射频应用中基于芯片的2.5 d集成电路的传输信道和匹配网络设计策略","authors":"Changle Zhi;Gang Dong;Deguang Yang;Xin Luo;Junpeng Yao;Daihang Liu;Zhangming Zhu","doi":"10.1109/JIOT.2025.3578639","DOIUrl":null,"url":null,"abstract":"In this article, a neural network-based approach for the co-design of transmission channels and matching networks in chiplet-based 2.5-D integrated circuits (ICs) for radio frequency (RF) applications is presented. This work proposes a dual-neural network framework that synergizes cascaded S-parameter modeling with data augmentation techniques. First, a cascaded method is developed to accurately model the 2.5-D signal transmission channel, incorporating through-silicon vias (TSVs), redistribution layers (RDLs), and matching networks, validated against commercial circuit tools. A convolutional neural network (CNN) is then trained to inversely map S-parameter requirements to optimal structural and matching network parameters. Concurrently, a denoising diffusion probabilistic model (DDPM) generates augmented S-parameter datasets to expand the design space while reducing simulation overhead. The framework enables automated compliance with critical constraints while optimizing secondary objectives, such as matching network area minimization and frequency response enhancement. This work provides a robust artificial intelligence (AI)-driven methodology for high-efficiency RF interconnects in heterogeneous integration platforms.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 17","pages":"35226-35236"},"PeriodicalIF":8.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmission Channel and Matching Network Design Strategies in Chiplet-Based 2.5-D ICs for RF Applications\",\"authors\":\"Changle Zhi;Gang Dong;Deguang Yang;Xin Luo;Junpeng Yao;Daihang Liu;Zhangming Zhu\",\"doi\":\"10.1109/JIOT.2025.3578639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a neural network-based approach for the co-design of transmission channels and matching networks in chiplet-based 2.5-D integrated circuits (ICs) for radio frequency (RF) applications is presented. This work proposes a dual-neural network framework that synergizes cascaded S-parameter modeling with data augmentation techniques. First, a cascaded method is developed to accurately model the 2.5-D signal transmission channel, incorporating through-silicon vias (TSVs), redistribution layers (RDLs), and matching networks, validated against commercial circuit tools. A convolutional neural network (CNN) is then trained to inversely map S-parameter requirements to optimal structural and matching network parameters. Concurrently, a denoising diffusion probabilistic model (DDPM) generates augmented S-parameter datasets to expand the design space while reducing simulation overhead. The framework enables automated compliance with critical constraints while optimizing secondary objectives, such as matching network area minimization and frequency response enhancement. This work provides a robust artificial intelligence (AI)-driven methodology for high-efficiency RF interconnects in heterogeneous integration platforms.\",\"PeriodicalId\":54347,\"journal\":{\"name\":\"IEEE Internet of Things Journal\",\"volume\":\"12 17\",\"pages\":\"35226-35236\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11030753/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11030753/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于神经网络的方法,用于射频(RF)应用中基于芯片的2.5 d集成电路(ic)的传输通道和匹配网络的协同设计。这项工作提出了一个双神经网络框架,它将级联s参数建模与数据增强技术协同起来。首先,开发了一种级联方法来精确建模2.5 d信号传输通道,包括硅通孔(tsv)、再分配层(rdl)和匹配网络,并通过商业电路工具进行了验证。然后训练卷积神经网络(CNN)将s参数要求逆映射到最优结构和匹配网络参数。同时,一个去噪扩散概率模型(DDPM)生成增广的s参数数据集,以扩大设计空间,同时减少仿真开销。该框架在优化次要目标(如匹配网络面积最小化和频率响应增强)的同时,能够自动遵守关键约束。这项工作为异构集成平台中的高效射频互连提供了一种强大的人工智能(AI)驱动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmission Channel and Matching Network Design Strategies in Chiplet-Based 2.5-D ICs for RF Applications
In this article, a neural network-based approach for the co-design of transmission channels and matching networks in chiplet-based 2.5-D integrated circuits (ICs) for radio frequency (RF) applications is presented. This work proposes a dual-neural network framework that synergizes cascaded S-parameter modeling with data augmentation techniques. First, a cascaded method is developed to accurately model the 2.5-D signal transmission channel, incorporating through-silicon vias (TSVs), redistribution layers (RDLs), and matching networks, validated against commercial circuit tools. A convolutional neural network (CNN) is then trained to inversely map S-parameter requirements to optimal structural and matching network parameters. Concurrently, a denoising diffusion probabilistic model (DDPM) generates augmented S-parameter datasets to expand the design space while reducing simulation overhead. The framework enables automated compliance with critical constraints while optimizing secondary objectives, such as matching network area minimization and frequency response enhancement. This work provides a robust artificial intelligence (AI)-driven methodology for high-efficiency RF interconnects in heterogeneous integration platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Internet of Things Journal
IEEE Internet of Things Journal Computer Science-Information Systems
CiteScore
17.60
自引率
13.20%
发文量
1982
期刊介绍: The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信