金-锡合金纳米颗粒的尺寸、组成和相位可调谐等离子体消光

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Connor S. Sullivan, Noah L. Mason, Anthony J. Branco, Sangmin Jeong, Oluwatosin O. Badru, Michael B. Ross
{"title":"金-锡合金纳米颗粒的尺寸、组成和相位可调谐等离子体消光","authors":"Connor S. Sullivan, Noah L. Mason, Anthony J. Branco, Sangmin Jeong, Oluwatosin O. Badru, Michael B. Ross","doi":"10.1021/acs.jpcc.5c00563","DOIUrl":null,"url":null,"abstract":"The synthesis of Au–Sn nanoparticles with tailorable localized surface plasmon resonances (LSPR) is explored, with a focus on size dependence, composition, and phase formation. Au–Sn nanoparticles were synthesized starting from Au seeds ranging in diameter from 5 to 30 nm. UV–visible spectroscopy revealed controllable blueshifting of the LSPR, from 520 to 460 nm, as Sn incorporation increased. X-ray diffraction (XRD) confirmed the formation of Au<sub>5</sub>Sn and AuSn intermetallic phases, with intermetallic formation dependent on both nanoparticle size and Sn content. Elemental analysis through energy-dispersive X-ray spectroscopy (EDS), total reflectance X-ray fluorescence (TXRF), and inductively coupled plasma optical emission spectroscopy (ICP-OES) provided further insight into the incorporation of Sn into Au nanoparticle seeds. We show that this approach allows one to create Au–Sn alloy nanoparticles of varying radii and crystalline phase contents all with the same LSPR (500 nm). Additionally, the size-dependent formation of intermetallic phases provides new physical insight into their impact on the LSPR. Formation of Au<sub><i>x</i></sub>Sn<sub>1–<i>x</i></sub> is associated with minimal blueshifting and broadening and Au<sub>5</sub>Sn is associated with linear blueshifting and a small amount of broadening, while AuSn formation leads to rapid blueshifting, broadening, and plasmon damping. This understanding enables precise control over the size, structure, and optical properties of Au–Sn nanoparticles, paving the way for the design of new plasmonic materials for applications in sensing, imaging, and catalysis.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"6 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size, Composition, and Phase-Tunable Plasmonic Extinction in Au–Sn Alloy Nanoparticles\",\"authors\":\"Connor S. Sullivan, Noah L. Mason, Anthony J. Branco, Sangmin Jeong, Oluwatosin O. Badru, Michael B. Ross\",\"doi\":\"10.1021/acs.jpcc.5c00563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of Au–Sn nanoparticles with tailorable localized surface plasmon resonances (LSPR) is explored, with a focus on size dependence, composition, and phase formation. Au–Sn nanoparticles were synthesized starting from Au seeds ranging in diameter from 5 to 30 nm. UV–visible spectroscopy revealed controllable blueshifting of the LSPR, from 520 to 460 nm, as Sn incorporation increased. X-ray diffraction (XRD) confirmed the formation of Au<sub>5</sub>Sn and AuSn intermetallic phases, with intermetallic formation dependent on both nanoparticle size and Sn content. Elemental analysis through energy-dispersive X-ray spectroscopy (EDS), total reflectance X-ray fluorescence (TXRF), and inductively coupled plasma optical emission spectroscopy (ICP-OES) provided further insight into the incorporation of Sn into Au nanoparticle seeds. We show that this approach allows one to create Au–Sn alloy nanoparticles of varying radii and crystalline phase contents all with the same LSPR (500 nm). Additionally, the size-dependent formation of intermetallic phases provides new physical insight into their impact on the LSPR. Formation of Au<sub><i>x</i></sub>Sn<sub>1–<i>x</i></sub> is associated with minimal blueshifting and broadening and Au<sub>5</sub>Sn is associated with linear blueshifting and a small amount of broadening, while AuSn formation leads to rapid blueshifting, broadening, and plasmon damping. This understanding enables precise control over the size, structure, and optical properties of Au–Sn nanoparticles, paving the way for the design of new plasmonic materials for applications in sensing, imaging, and catalysis.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.5c00563\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00563","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

探索了具有可定制的局部表面等离子体共振(LSPR)的金-锡纳米粒子的合成,重点是尺寸依赖性,组成和相形成。以直径为5 ~ 30nm的Au种子为起始原料合成了Au - sn纳米粒子。紫外可见光谱显示,随着Sn掺入量的增加,LSPR在520 ~ 460 nm范围内发生了可控的蓝移。x射线衍射(XRD)证实了Au5Sn和AuSn金属间相的形成,金属间相的形成取决于纳米颗粒的大小和Sn的含量。通过能量色散x射线光谱(EDS)、全反射x射线荧光(TXRF)和电感耦合等离子体光学发射光谱(ICP-OES)进行元素分析,进一步了解了Sn在Au纳米粒子种子中的结合情况。我们表明,这种方法允许人们创建不同半径和晶相含量的金-锡合金纳米颗粒,所有这些纳米颗粒具有相同的LSPR (500 nm)。此外,金属间相的尺寸依赖性形成为它们对LSPR的影响提供了新的物理见解。AuxSn1-x的形成与最小的蓝移和增宽有关,而Au5Sn的形成与线性蓝移和少量增宽有关,而AuSn的形成导致快速的蓝移、增宽和等离激元阻尼。这种理解能够精确控制Au-Sn纳米颗粒的尺寸、结构和光学性质,为设计用于传感、成像和催化的新型等离子体材料铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size, Composition, and Phase-Tunable Plasmonic Extinction in Au–Sn Alloy Nanoparticles
The synthesis of Au–Sn nanoparticles with tailorable localized surface plasmon resonances (LSPR) is explored, with a focus on size dependence, composition, and phase formation. Au–Sn nanoparticles were synthesized starting from Au seeds ranging in diameter from 5 to 30 nm. UV–visible spectroscopy revealed controllable blueshifting of the LSPR, from 520 to 460 nm, as Sn incorporation increased. X-ray diffraction (XRD) confirmed the formation of Au5Sn and AuSn intermetallic phases, with intermetallic formation dependent on both nanoparticle size and Sn content. Elemental analysis through energy-dispersive X-ray spectroscopy (EDS), total reflectance X-ray fluorescence (TXRF), and inductively coupled plasma optical emission spectroscopy (ICP-OES) provided further insight into the incorporation of Sn into Au nanoparticle seeds. We show that this approach allows one to create Au–Sn alloy nanoparticles of varying radii and crystalline phase contents all with the same LSPR (500 nm). Additionally, the size-dependent formation of intermetallic phases provides new physical insight into their impact on the LSPR. Formation of AuxSn1–x is associated with minimal blueshifting and broadening and Au5Sn is associated with linear blueshifting and a small amount of broadening, while AuSn formation leads to rapid blueshifting, broadening, and plasmon damping. This understanding enables precise control over the size, structure, and optical properties of Au–Sn nanoparticles, paving the way for the design of new plasmonic materials for applications in sensing, imaging, and catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信