GCM-PDA:遥感影像时空融合中递进差分衰减的生成补偿模型

Kai Ren;Weiwei Sun;Xiangchao Meng;Gang Yang
{"title":"GCM-PDA:遥感影像时空融合中递进差分衰减的生成补偿模型","authors":"Kai Ren;Weiwei Sun;Xiangchao Meng;Gang Yang","doi":"10.1109/TIP.2025.3576992","DOIUrl":null,"url":null,"abstract":"High-resolution satellite imagery with dense temporal series is crucial for long-term surface change monitoring. Spatiotemporal fusion seeks to reconstruct remote sensing image sequences with both high spatial and temporal resolutions by leveraging prior information from multiple satellite platforms. However, significant radiometric discrepancies and large spatial resolution variations between images acquired from different satellite sensors, coupled with the limited availability of prior data, present major challenges to accurately reconstructing missing data using existing methods. To address these challenges, this paper introduces GCM-PDA, a novel generative compensation model with progressive difference attenuation for spatiotemporal fusion of remote sensing images. The proposed model integrates multi-scale image decomposition within a progressive fusion framework, enabling the efficient extraction and integration of information across scales. Additionally, GCM-PDA employs domain adaptation techniques to mitigate radiometric inconsistencies between heterogeneous images. Notably, this study pioneers the use of style transformation in spatiotemporal fusion to achieve spatial-spectral compensation, effectively overcoming the constraints of limited prior image information. Experimental results demonstrate that GCM-PDA not only achieves competitive fusion performance but also exhibits strong robustness across diverse conditions.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"3817-3832"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GCM-PDA: A Generative Compensation Model for Progressive Difference Attenuation in Spatiotemporal Fusion of Remote Sensing Images\",\"authors\":\"Kai Ren;Weiwei Sun;Xiangchao Meng;Gang Yang\",\"doi\":\"10.1109/TIP.2025.3576992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution satellite imagery with dense temporal series is crucial for long-term surface change monitoring. Spatiotemporal fusion seeks to reconstruct remote sensing image sequences with both high spatial and temporal resolutions by leveraging prior information from multiple satellite platforms. However, significant radiometric discrepancies and large spatial resolution variations between images acquired from different satellite sensors, coupled with the limited availability of prior data, present major challenges to accurately reconstructing missing data using existing methods. To address these challenges, this paper introduces GCM-PDA, a novel generative compensation model with progressive difference attenuation for spatiotemporal fusion of remote sensing images. The proposed model integrates multi-scale image decomposition within a progressive fusion framework, enabling the efficient extraction and integration of information across scales. Additionally, GCM-PDA employs domain adaptation techniques to mitigate radiometric inconsistencies between heterogeneous images. Notably, this study pioneers the use of style transformation in spatiotemporal fusion to achieve spatial-spectral compensation, effectively overcoming the constraints of limited prior image information. Experimental results demonstrate that GCM-PDA not only achieves competitive fusion performance but also exhibits strong robustness across diverse conditions.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"3817-3832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11031114/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11031114/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有密集时间序列的高分辨率卫星图像是长期地表变化监测的关键。时空融合旨在利用来自多个卫星平台的先验信息,重建具有高空间和时间分辨率的遥感图像序列。然而,从不同卫星传感器获取的图像之间存在显著的辐射差异和较大的空间分辨率差异,再加上先前数据的可用性有限,这对使用现有方法准确重建缺失数据提出了重大挑战。为了解决这些问题,本文提出了一种新的基于渐进式差分衰减的遥感图像时空融合生成补偿模型GCM-PDA。该模型将多尺度图像分解集成在渐进融合框架中,实现了跨尺度信息的高效提取和融合。此外,GCM-PDA采用域自适应技术来减轻异构图像之间的辐射不一致性。值得注意的是,本研究首次在时空融合中使用样式变换实现空间-光谱补偿,有效克服了先验图像信息有限的限制。实验结果表明,GCM-PDA不仅具有较好的融合性能,而且在不同条件下具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GCM-PDA: A Generative Compensation Model for Progressive Difference Attenuation in Spatiotemporal Fusion of Remote Sensing Images
High-resolution satellite imagery with dense temporal series is crucial for long-term surface change monitoring. Spatiotemporal fusion seeks to reconstruct remote sensing image sequences with both high spatial and temporal resolutions by leveraging prior information from multiple satellite platforms. However, significant radiometric discrepancies and large spatial resolution variations between images acquired from different satellite sensors, coupled with the limited availability of prior data, present major challenges to accurately reconstructing missing data using existing methods. To address these challenges, this paper introduces GCM-PDA, a novel generative compensation model with progressive difference attenuation for spatiotemporal fusion of remote sensing images. The proposed model integrates multi-scale image decomposition within a progressive fusion framework, enabling the efficient extraction and integration of information across scales. Additionally, GCM-PDA employs domain adaptation techniques to mitigate radiometric inconsistencies between heterogeneous images. Notably, this study pioneers the use of style transformation in spatiotemporal fusion to achieve spatial-spectral compensation, effectively overcoming the constraints of limited prior image information. Experimental results demonstrate that GCM-PDA not only achieves competitive fusion performance but also exhibits strong robustness across diverse conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信