电化学锂化过程中氮化硅阳极的结构演变。

ACS electrochemistry Pub Date : 2025-02-28 eCollection Date: 2025-06-05 DOI:10.1021/acselectrochem.4c00230
Adam J Lovett, Máté Füredi, Liam Bird, Samia Said, Brandon Frost, Paul R Shearing, Stefan Guldin, Thomas S Miller
{"title":"电化学锂化过程中氮化硅阳极的结构演变。","authors":"Adam J Lovett, Máté Füredi, Liam Bird, Samia Said, Brandon Frost, Paul R Shearing, Stefan Guldin, Thomas S Miller","doi":"10.1021/acselectrochem.4c00230","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon nitride (SiN <sub><i>x</i></sub> ), a conversion-alloying lithium-ion battery electrode with excellent potential to replace silicon and graphite anodes, offers improved cycle stability and fast-charging capabilities. During the formation cycle(s), SiN <sub><i>x</i></sub> irreversibly converts into a mixture of lithiated silicon and nitridosilicate matrix. However, beyond this basic understanding, there is limited fundamental insight into how the post-conversion structure results in improved electrochemical performance. This significantly hinders the optimization and commercialization prospects of SiN <sub><i>x</i></sub> anodes. Herein, <i>operando</i> electrochemical atomic force microscopy is used to uncover the morphological and chemo-mechanical changes of SiN <sub><i>x</i></sub> thin films during the conversion reaction. We elucidate that the post-conversion SiN <sub><i>x</i></sub> forms silicon domains embedded within a matrix with a core-shell-like structure comprised of a stiff outer nitridosilicate surface and softer inner Si-rich core. The silicon domains that form have very stable dimensions (∼100 nm in diameter) that, crucially, remain smaller than the critical cracking threshold of silicon. This results in a more mechanically robust anode, anticipated to be free from the adverse effects of cracking, pulverization, and subsequent capacity fade. Our work marks an important advance in the fundamental understanding of silicon nitride anodes and offers a pathway to their incorporation into next-generation batteries.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 6","pages":"962-973"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147161/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural Evolution of Silicon Nitride Anodes during Electrochemical Lithiation.\",\"authors\":\"Adam J Lovett, Máté Füredi, Liam Bird, Samia Said, Brandon Frost, Paul R Shearing, Stefan Guldin, Thomas S Miller\",\"doi\":\"10.1021/acselectrochem.4c00230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silicon nitride (SiN <sub><i>x</i></sub> ), a conversion-alloying lithium-ion battery electrode with excellent potential to replace silicon and graphite anodes, offers improved cycle stability and fast-charging capabilities. During the formation cycle(s), SiN <sub><i>x</i></sub> irreversibly converts into a mixture of lithiated silicon and nitridosilicate matrix. However, beyond this basic understanding, there is limited fundamental insight into how the post-conversion structure results in improved electrochemical performance. This significantly hinders the optimization and commercialization prospects of SiN <sub><i>x</i></sub> anodes. Herein, <i>operando</i> electrochemical atomic force microscopy is used to uncover the morphological and chemo-mechanical changes of SiN <sub><i>x</i></sub> thin films during the conversion reaction. We elucidate that the post-conversion SiN <sub><i>x</i></sub> forms silicon domains embedded within a matrix with a core-shell-like structure comprised of a stiff outer nitridosilicate surface and softer inner Si-rich core. The silicon domains that form have very stable dimensions (∼100 nm in diameter) that, crucially, remain smaller than the critical cracking threshold of silicon. This results in a more mechanically robust anode, anticipated to be free from the adverse effects of cracking, pulverization, and subsequent capacity fade. Our work marks an important advance in the fundamental understanding of silicon nitride anodes and offers a pathway to their incorporation into next-generation batteries.</p>\",\"PeriodicalId\":520400,\"journal\":{\"name\":\"ACS electrochemistry\",\"volume\":\"1 6\",\"pages\":\"962-973\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147161/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acselectrochem.4c00230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acselectrochem.4c00230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氮化硅(sinx)是一种转换合金锂离子电池电极,具有取代硅和石墨阳极的良好潜力,可提供更好的循环稳定性和快速充电能力。在地层循环过程中,sinx不可逆地转化为锂化硅和氮化硅酸盐基质的混合物。然而,除了这一基本认识之外,对转换后结构如何提高电化学性能的基本见解有限。这严重阻碍了sinx阳极的优化和商业化前景。本文利用operando电化学原子力显微镜揭示了sinx薄膜在转化反应过程中的形态和化学力学变化。我们阐明了转换后的sinx形成嵌入在具有核壳状结构的基体中的硅畴,该结构由坚硬的外部氮化硅表面和柔软的内部富硅核心组成。形成的硅畴具有非常稳定的尺寸(直径约100纳米),至关重要的是,它仍然小于硅的临界开裂阈值。这导致了一个更机械坚固的阳极,预计将免于开裂,粉碎和随后的容量衰退的不利影响。我们的工作标志着对氮化硅阳极的基本理解取得了重要进展,并为将其纳入下一代电池提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Evolution of Silicon Nitride Anodes during Electrochemical Lithiation.

Silicon nitride (SiN x ), a conversion-alloying lithium-ion battery electrode with excellent potential to replace silicon and graphite anodes, offers improved cycle stability and fast-charging capabilities. During the formation cycle(s), SiN x irreversibly converts into a mixture of lithiated silicon and nitridosilicate matrix. However, beyond this basic understanding, there is limited fundamental insight into how the post-conversion structure results in improved electrochemical performance. This significantly hinders the optimization and commercialization prospects of SiN x anodes. Herein, operando electrochemical atomic force microscopy is used to uncover the morphological and chemo-mechanical changes of SiN x thin films during the conversion reaction. We elucidate that the post-conversion SiN x forms silicon domains embedded within a matrix with a core-shell-like structure comprised of a stiff outer nitridosilicate surface and softer inner Si-rich core. The silicon domains that form have very stable dimensions (∼100 nm in diameter) that, crucially, remain smaller than the critical cracking threshold of silicon. This results in a more mechanically robust anode, anticipated to be free from the adverse effects of cracking, pulverization, and subsequent capacity fade. Our work marks an important advance in the fundamental understanding of silicon nitride anodes and offers a pathway to their incorporation into next-generation batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信