提高零射多标内镜器械分类的通用性。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Raphaela Maerkl, Tobias Rueckert, David Rauber, Max Gutbrod, Danilo Weber Nunes, Christoph Palm
{"title":"提高零射多标内镜器械分类的通用性。","authors":"Raphaela Maerkl, Tobias Rueckert, David Rauber, Max Gutbrod, Danilo Weber Nunes, Christoph Palm","doi":"10.1007/s11548-025-03439-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recognizing previously unseen classes with neural networks is a significant challenge due to their limited generalization capabilities. This issue is particularly critical in safety-critical domains such as medical applications, where accurate classification is essential for reliability and patient safety. Zero-shot learning methods address this challenge by utilizing additional semantic data, with their performance relying heavily on the quality of the generated embeddings.</p><p><strong>Methods: </strong>This work investigates the use of full descriptive sentences, generated by a Sentence-BERT model, as class representations, compared to simpler category-based word embeddings derived from a BERT model. Additionally, the impact of z-score normalization as a post-processing step on these embeddings is explored. The proposed approach is evaluated on a multi-label generalized zero-shot learning task, focusing on the recognition of surgical instruments in endoscopic images from minimally invasive cholecystectomies.</p><p><strong>Results: </strong>The results demonstrate that combining sentence embeddings and z-score normalization significantly improves model performance. For unseen classes, the AUROC improves from 43.9 % to 64.9 %, and the multi-label accuracy from 26.1 % to 79.5 %. Overall performance measured across both seen and unseen classes improves from 49.3 % to 64.9 % in AUROC and from 37.3 % to 65.1 % in multi-label accuracy, highlighting the effectiveness of our approach.</p><p><strong>Conclusion: </strong>These findings demonstrate that sentence embeddings and z-score normalization can substantially enhance the generalization performance of zero-shot learning models. However, as the study is based on a single dataset, future work should validate the method across diverse datasets and application domains to establish its robustness and broader applicability.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing generalization in zero-shot multi-label endoscopic instrument classification.\",\"authors\":\"Raphaela Maerkl, Tobias Rueckert, David Rauber, Max Gutbrod, Danilo Weber Nunes, Christoph Palm\",\"doi\":\"10.1007/s11548-025-03439-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Recognizing previously unseen classes with neural networks is a significant challenge due to their limited generalization capabilities. This issue is particularly critical in safety-critical domains such as medical applications, where accurate classification is essential for reliability and patient safety. Zero-shot learning methods address this challenge by utilizing additional semantic data, with their performance relying heavily on the quality of the generated embeddings.</p><p><strong>Methods: </strong>This work investigates the use of full descriptive sentences, generated by a Sentence-BERT model, as class representations, compared to simpler category-based word embeddings derived from a BERT model. Additionally, the impact of z-score normalization as a post-processing step on these embeddings is explored. The proposed approach is evaluated on a multi-label generalized zero-shot learning task, focusing on the recognition of surgical instruments in endoscopic images from minimally invasive cholecystectomies.</p><p><strong>Results: </strong>The results demonstrate that combining sentence embeddings and z-score normalization significantly improves model performance. For unseen classes, the AUROC improves from 43.9 % to 64.9 %, and the multi-label accuracy from 26.1 % to 79.5 %. Overall performance measured across both seen and unseen classes improves from 49.3 % to 64.9 % in AUROC and from 37.3 % to 65.1 % in multi-label accuracy, highlighting the effectiveness of our approach.</p><p><strong>Conclusion: </strong>These findings demonstrate that sentence embeddings and z-score normalization can substantially enhance the generalization performance of zero-shot learning models. However, as the study is based on a single dataset, future work should validate the method across diverse datasets and application domains to establish its robustness and broader applicability.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03439-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03439-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:由于神经网络有限的泛化能力,用神经网络识别以前看不见的类是一个重大的挑战。这个问题在医疗应用等安全关键领域尤为重要,在这些领域,准确分类对于可靠性和患者安全至关重要。Zero-shot学习方法通过利用额外的语义数据来解决这一挑战,其性能在很大程度上依赖于生成的嵌入的质量。方法:这项工作研究了由句子-BERT模型生成的完整描述性句子作为类表示的使用,并与来自BERT模型的更简单的基于类别的词嵌入进行了比较。此外,还探讨了z-score归一化作为后处理步骤对这些嵌入的影响。该方法在一个多标签广义零射击学习任务上进行了评估,重点研究了微创胆囊切除术内镜图像中手术器械的识别。结果:结果表明,句子嵌入和z分数归一化相结合显著提高了模型的性能。对于未见过的类别,AUROC从43.9%提高到64.9%,多标签准确率从26.1%提高到79.5%。在可见和未见类别中测量的总体性能在AUROC中从49.3%提高到64.9%,在多标签准确度中从37.3%提高到65.1%,突出了我们方法的有效性。结论:这些发现表明句子嵌入和z分数归一化可以显著提高零次学习模型的泛化性能。然而,由于该研究是基于单一数据集的,未来的工作应该在不同的数据集和应用领域验证该方法,以建立其鲁棒性和更广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing generalization in zero-shot multi-label endoscopic instrument classification.

Purpose: Recognizing previously unseen classes with neural networks is a significant challenge due to their limited generalization capabilities. This issue is particularly critical in safety-critical domains such as medical applications, where accurate classification is essential for reliability and patient safety. Zero-shot learning methods address this challenge by utilizing additional semantic data, with their performance relying heavily on the quality of the generated embeddings.

Methods: This work investigates the use of full descriptive sentences, generated by a Sentence-BERT model, as class representations, compared to simpler category-based word embeddings derived from a BERT model. Additionally, the impact of z-score normalization as a post-processing step on these embeddings is explored. The proposed approach is evaluated on a multi-label generalized zero-shot learning task, focusing on the recognition of surgical instruments in endoscopic images from minimally invasive cholecystectomies.

Results: The results demonstrate that combining sentence embeddings and z-score normalization significantly improves model performance. For unseen classes, the AUROC improves from 43.9 % to 64.9 %, and the multi-label accuracy from 26.1 % to 79.5 %. Overall performance measured across both seen and unseen classes improves from 49.3 % to 64.9 % in AUROC and from 37.3 % to 65.1 % in multi-label accuracy, highlighting the effectiveness of our approach.

Conclusion: These findings demonstrate that sentence embeddings and z-score normalization can substantially enhance the generalization performance of zero-shot learning models. However, as the study is based on a single dataset, future work should validate the method across diverse datasets and application domains to establish its robustness and broader applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信