Junsik J Sung, Jacob R Shaw, Josie D Rezende, Shruti Dharmaraj, Andrea L Cottingham, Mehari M Weldemariam, Jace W Jones, Maureen A Kane, Ryan M Pearson
{"title":"meyenii Walp脂质纳米颗粒通过多模态蛋白冠形成减轻败血症。","authors":"Junsik J Sung, Jacob R Shaw, Josie D Rezende, Shruti Dharmaraj, Andrea L Cottingham, Mehari M Weldemariam, Jace W Jones, Maureen A Kane, Ryan M Pearson","doi":"10.1016/j.omtm.2025.101491","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-derived lipid nanoparticles (PDNPs) are nano-sized particles isolated from various edible plants that contain bioactive components involved in regulating biological responses. Here, we isolated maca-derived lipid nanoparticles (MDNPs) from <i>Lepidium meyenii</i> Walp (maca), evaluated their therapeutic effects using two representative lethal models of sepsis, and determined their multimodal anti-inflammatory mechanism that relied on broad sequestration and neutralization of multiple pro-inflammatory cytokines and acute phase proteins (APPs) through formation of a protein corona. Lipidomics of MDNPs revealed triacylglycerols and phytoceramides as major constituents. <i>In vitro</i> studies showed that MDNPs were non-toxic, reduced macrophage activation, and sequestered lipopolysaccharide (LPS)-induced pro-inflammatory cytokines, while mitigating nuclear factor kappa B (NF-κB) activity. In a pre-established LPS-induced endotoxemia model, MDNP treatment significantly reduced systemic pro-inflammatory cytokines, reduced organ damage, and increased survival. Untargeted proteomics and bioinformatics analysis identified an enrichment in APPs present in MDNP protein coronas and corresponding inflammatory pathways modulated. The efficacy of MDNPs were further tested using a lethal polymicrobial sepsis model, where treatment significantly improved survival even in the absence of antibiotics. This study identifies MDNPs as an effective strategy capable of inducing potent anti-inflammatory responses, offering significant therapeutic potential for diseases such as sepsis, while informing the future design of synthetic lipid nanoparticles.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 2","pages":"101491"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lipid nanoparticles from <i>L. meyenii</i> Walp mitigate sepsis through multimodal protein corona formation.\",\"authors\":\"Junsik J Sung, Jacob R Shaw, Josie D Rezende, Shruti Dharmaraj, Andrea L Cottingham, Mehari M Weldemariam, Jace W Jones, Maureen A Kane, Ryan M Pearson\",\"doi\":\"10.1016/j.omtm.2025.101491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-derived lipid nanoparticles (PDNPs) are nano-sized particles isolated from various edible plants that contain bioactive components involved in regulating biological responses. Here, we isolated maca-derived lipid nanoparticles (MDNPs) from <i>Lepidium meyenii</i> Walp (maca), evaluated their therapeutic effects using two representative lethal models of sepsis, and determined their multimodal anti-inflammatory mechanism that relied on broad sequestration and neutralization of multiple pro-inflammatory cytokines and acute phase proteins (APPs) through formation of a protein corona. Lipidomics of MDNPs revealed triacylglycerols and phytoceramides as major constituents. <i>In vitro</i> studies showed that MDNPs were non-toxic, reduced macrophage activation, and sequestered lipopolysaccharide (LPS)-induced pro-inflammatory cytokines, while mitigating nuclear factor kappa B (NF-κB) activity. In a pre-established LPS-induced endotoxemia model, MDNP treatment significantly reduced systemic pro-inflammatory cytokines, reduced organ damage, and increased survival. Untargeted proteomics and bioinformatics analysis identified an enrichment in APPs present in MDNP protein coronas and corresponding inflammatory pathways modulated. The efficacy of MDNPs were further tested using a lethal polymicrobial sepsis model, where treatment significantly improved survival even in the absence of antibiotics. This study identifies MDNPs as an effective strategy capable of inducing potent anti-inflammatory responses, offering significant therapeutic potential for diseases such as sepsis, while informing the future design of synthetic lipid nanoparticles.</p>\",\"PeriodicalId\":54333,\"journal\":{\"name\":\"Molecular Therapy-Methods & Clinical Development\",\"volume\":\"33 2\",\"pages\":\"101491\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy-Methods & Clinical Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtm.2025.101491\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/12 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2025.101491","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Lipid nanoparticles from L. meyenii Walp mitigate sepsis through multimodal protein corona formation.
Plant-derived lipid nanoparticles (PDNPs) are nano-sized particles isolated from various edible plants that contain bioactive components involved in regulating biological responses. Here, we isolated maca-derived lipid nanoparticles (MDNPs) from Lepidium meyenii Walp (maca), evaluated their therapeutic effects using two representative lethal models of sepsis, and determined their multimodal anti-inflammatory mechanism that relied on broad sequestration and neutralization of multiple pro-inflammatory cytokines and acute phase proteins (APPs) through formation of a protein corona. Lipidomics of MDNPs revealed triacylglycerols and phytoceramides as major constituents. In vitro studies showed that MDNPs were non-toxic, reduced macrophage activation, and sequestered lipopolysaccharide (LPS)-induced pro-inflammatory cytokines, while mitigating nuclear factor kappa B (NF-κB) activity. In a pre-established LPS-induced endotoxemia model, MDNP treatment significantly reduced systemic pro-inflammatory cytokines, reduced organ damage, and increased survival. Untargeted proteomics and bioinformatics analysis identified an enrichment in APPs present in MDNP protein coronas and corresponding inflammatory pathways modulated. The efficacy of MDNPs were further tested using a lethal polymicrobial sepsis model, where treatment significantly improved survival even in the absence of antibiotics. This study identifies MDNPs as an effective strategy capable of inducing potent anti-inflammatory responses, offering significant therapeutic potential for diseases such as sepsis, while informing the future design of synthetic lipid nanoparticles.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.