在没有和存在时间延迟的情况下,由收获和猎物避难驱动的种群动态。

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2025-12-01 Epub Date: 2025-06-10 DOI:10.1080/17513758.2025.2516461
Tiancai Liao, Jian Chen, Min Zhu, Yi Wang
{"title":"在没有和存在时间延迟的情况下,由收获和猎物避难驱动的种群动态。","authors":"Tiancai Liao, Jian Chen, Min Zhu, Yi Wang","doi":"10.1080/17513758.2025.2516461","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study the dynamics of a delayed predator-prey model with harvesting and prey refuge. For the model without time delays, we show the stability of boundary and positive equilibria, given the existence of bionomic equilibrium, and provide the optimal harvesting policy. For the model with time delays, we show the local stability of the positive equilibrium for four different time delay cases, give the existence of Hopf bifurcation near the positive equilibrium, and prove the direction and stability of bifurcating periodic solutions. Ecologically, via numerical simulations, we find that the synergistic effects of time delay, refuge and harvesting can have complex effects on population dynamics. One of the most important results indicates that the increase of prey refuge or prey harvesting rate can eliminate the periodic solutions induced by time delay, while the increase in predator harvesting rate can maintain this periodic phenomenon.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2516461"},"PeriodicalIF":1.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population dynamics driven by harvesting and prey refuge in the absence and presence of time delays.\",\"authors\":\"Tiancai Liao, Jian Chen, Min Zhu, Yi Wang\",\"doi\":\"10.1080/17513758.2025.2516461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we study the dynamics of a delayed predator-prey model with harvesting and prey refuge. For the model without time delays, we show the stability of boundary and positive equilibria, given the existence of bionomic equilibrium, and provide the optimal harvesting policy. For the model with time delays, we show the local stability of the positive equilibrium for four different time delay cases, give the existence of Hopf bifurcation near the positive equilibrium, and prove the direction and stability of bifurcating periodic solutions. Ecologically, via numerical simulations, we find that the synergistic effects of time delay, refuge and harvesting can have complex effects on population dynamics. One of the most important results indicates that the increase of prey refuge or prey harvesting rate can eliminate the periodic solutions induced by time delay, while the increase in predator harvesting rate can maintain this periodic phenomenon.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"19 1\",\"pages\":\"2516461\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2025.2516461\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2025.2516461","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有收获和猎物庇护的延迟捕食-食饵模型的动力学问题。对于无时滞模型,给出了边界和正平衡点的稳定性,并给出了最优采收策略。对于时滞模型,给出了四种不同时滞情况下正平衡点的局部稳定性,给出了正平衡点附近Hopf分岔的存在性,并证明了分岔周期解的方向和稳定性。生态学上,通过数值模拟,我们发现时间延迟、避难和收获的协同效应会对种群动态产生复杂的影响。其中一个最重要的结果表明,猎物避难所或猎物捕获率的增加可以消除由时间延迟引起的周期性解,而捕食者捕获率的增加可以维持这种周期性现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population dynamics driven by harvesting and prey refuge in the absence and presence of time delays.

In this paper, we study the dynamics of a delayed predator-prey model with harvesting and prey refuge. For the model without time delays, we show the stability of boundary and positive equilibria, given the existence of bionomic equilibrium, and provide the optimal harvesting policy. For the model with time delays, we show the local stability of the positive equilibrium for four different time delay cases, give the existence of Hopf bifurcation near the positive equilibrium, and prove the direction and stability of bifurcating periodic solutions. Ecologically, via numerical simulations, we find that the synergistic effects of time delay, refuge and harvesting can have complex effects on population dynamics. One of the most important results indicates that the increase of prey refuge or prey harvesting rate can eliminate the periodic solutions induced by time delay, while the increase in predator harvesting rate can maintain this periodic phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信