肽介导的里氏木霉Cel7A在生物乙醇生产中的热稳定性增强。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bader Huwaimel, Kareem M Younes, Amr S Abouzied
{"title":"肽介导的里氏木霉Cel7A在生物乙醇生产中的热稳定性增强。","authors":"Bader Huwaimel, Kareem M Younes, Amr S Abouzied","doi":"10.1080/07391102.2025.2514705","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the thermal stability of <i>Trichoderma reesei</i> Cel7A, a key cellulase for bioethanol production, is crucial for reducing costs and enhancing efficiency under industrial conditions. While Cel7A functions optimally at moderate temperatures (40-50 °C), its activity diminishes at higher ranges (50-80 °C). This study integrates Molecular Dynamics (MD) simulations, Machine Learning (ML) predictions, and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy calculations to develop a peptide-mediated stabilization strategy. Analysis of root mean square fluctuations (RMSF) at 350K identified thermally sensitive, flexible regions. Surface-accessible area calculations pinpointed a stretch of residues (TYPTNETSTPG) for targeted mutations, generating 69,984 peptides. Screening with ML-based DeepPurpose, clustering, and similarity analyses yielded 15 candidates. Docking and ΔSASA calculations highlighted three promising peptides (Peptide-7, Peptide-10, and Peptide-15) with binding free energies of -27.33, -11.07, and -7.36 kcal/mol, respectively. Density Functional Theory (DFT), MD simulations, and QM/MM analyses revealed Peptide-15 as the most stable candidate, displaying strong polar interactions, high dipole moment (447.49 Debye), and consistent energetic stabilization. Its integration with Cel7A achieved thermal stability, suggesting that peptide-based stabilization is a viable method to enhance enzyme performance in bioethanol systems under heat stress.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-25"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide-mediated stabilization of <i>Trichoderma reesei</i> Cel7A for enhanced thermal stability in bioethanol production.\",\"authors\":\"Bader Huwaimel, Kareem M Younes, Amr S Abouzied\",\"doi\":\"10.1080/07391102.2025.2514705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Improving the thermal stability of <i>Trichoderma reesei</i> Cel7A, a key cellulase for bioethanol production, is crucial for reducing costs and enhancing efficiency under industrial conditions. While Cel7A functions optimally at moderate temperatures (40-50 °C), its activity diminishes at higher ranges (50-80 °C). This study integrates Molecular Dynamics (MD) simulations, Machine Learning (ML) predictions, and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy calculations to develop a peptide-mediated stabilization strategy. Analysis of root mean square fluctuations (RMSF) at 350K identified thermally sensitive, flexible regions. Surface-accessible area calculations pinpointed a stretch of residues (TYPTNETSTPG) for targeted mutations, generating 69,984 peptides. Screening with ML-based DeepPurpose, clustering, and similarity analyses yielded 15 candidates. Docking and ΔSASA calculations highlighted three promising peptides (Peptide-7, Peptide-10, and Peptide-15) with binding free energies of -27.33, -11.07, and -7.36 kcal/mol, respectively. Density Functional Theory (DFT), MD simulations, and QM/MM analyses revealed Peptide-15 as the most stable candidate, displaying strong polar interactions, high dipole moment (447.49 Debye), and consistent energetic stabilization. Its integration with Cel7A achieved thermal stability, suggesting that peptide-based stabilization is a viable method to enhance enzyme performance in bioethanol systems under heat stress.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2514705\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2514705","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

里氏木霉(Trichoderma reesei) Cel7A是生产生物乙醇的关键纤维素酶,提高其热稳定性对于降低工业条件下的成本和提高效率至关重要。虽然Cel7A在中等温度(40-50°C)下功能最佳,但在较高温度(50-80°C)下活性减弱。该研究整合了分子动力学(MD)模拟、机器学习(ML)预测和分子力学/广义出生表面积(MM/GBSA)自由能计算,以开发肽介导的稳定策略。分析均方根波动(RMSF)在350K确定热敏,柔性区域。表面可接近面积的计算精确地确定了一段残基(TYPTNETSTPG)用于靶向突变,产生69,984条肽。通过基于深度目的的机器学习筛选,聚类和相似性分析产生了15个候选对象。对接和ΔSASA计算突出了三个有前途的肽(Peptide-7, Peptide-10和Peptide-15),它们的结合自由能分别为-27.33,-11.07和-7.36 kcal/mol。密度泛函理论(DFT)、MD模拟和QM/MM分析显示,Peptide-15是最稳定的候选分子,具有强极性相互作用、高偶极矩(447.49 Debye)和稳定的能量。它与Cel7A的结合实现了热稳定性,这表明肽基稳定化是一种在热胁迫下提高生物乙醇体系中酶性能的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peptide-mediated stabilization of Trichoderma reesei Cel7A for enhanced thermal stability in bioethanol production.

Improving the thermal stability of Trichoderma reesei Cel7A, a key cellulase for bioethanol production, is crucial for reducing costs and enhancing efficiency under industrial conditions. While Cel7A functions optimally at moderate temperatures (40-50 °C), its activity diminishes at higher ranges (50-80 °C). This study integrates Molecular Dynamics (MD) simulations, Machine Learning (ML) predictions, and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy calculations to develop a peptide-mediated stabilization strategy. Analysis of root mean square fluctuations (RMSF) at 350K identified thermally sensitive, flexible regions. Surface-accessible area calculations pinpointed a stretch of residues (TYPTNETSTPG) for targeted mutations, generating 69,984 peptides. Screening with ML-based DeepPurpose, clustering, and similarity analyses yielded 15 candidates. Docking and ΔSASA calculations highlighted three promising peptides (Peptide-7, Peptide-10, and Peptide-15) with binding free energies of -27.33, -11.07, and -7.36 kcal/mol, respectively. Density Functional Theory (DFT), MD simulations, and QM/MM analyses revealed Peptide-15 as the most stable candidate, displaying strong polar interactions, high dipole moment (447.49 Debye), and consistent energetic stabilization. Its integration with Cel7A achieved thermal stability, suggesting that peptide-based stabilization is a viable method to enhance enzyme performance in bioethanol systems under heat stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信