使用自然语言处理在整个医疗系统中识别炎性乳腺癌病例。

IF 3.4 Q2 ONCOLOGY
Ramez Kouzy, Megumi Kai, Huong T Le-Petross, Sadia Saleem, Wendy A Woodward
{"title":"使用自然语言处理在整个医疗系统中识别炎性乳腺癌病例。","authors":"Ramez Kouzy, Megumi Kai, Huong T Le-Petross, Sadia Saleem, Wendy A Woodward","doi":"10.1093/jncics/pkaf058","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification and referral of inflammatory breast cancer (IBC) remains challenging within large healthcare systems, limiting access to specialized care. We developed and evaluated an artificial intelligence-driven platform integrating natural language processing (NLP) with electronic health records to systematically identify potential IBC cases across five campuses. Our platform analyzed 8,623,494 clinical notes, implementing a sequential review process: NLP screening followed by human validation and multidisciplinary confirmation. Initial NLP screening achieved 55.4% positive predictive value, improving to 78.4% with human-in-the-loop review. Notably, among 255 confirmed IBC cases, our system demonstrated 92.2% sensitivity, identifying 57 cases (22.4%) that traditional surveillance methods missed. Documentation patterns significantly influenced system performance, with combined IBC and T4d staging mentions showing highest predictive value (98.2%). This proof-of-concept study demonstrates that lightweight NLP systems with targeted human review can identify rare cancer cases that may otherwise remain siloed within complex healthcare networks, ultimately improving access to specialized care resources.</p>","PeriodicalId":14681,"journal":{"name":"JNCI Cancer Spectrum","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of natural language processing to identify inflammatory breast cancer cases across a healthcare system.\",\"authors\":\"Ramez Kouzy, Megumi Kai, Huong T Le-Petross, Sadia Saleem, Wendy A Woodward\",\"doi\":\"10.1093/jncics/pkaf058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early identification and referral of inflammatory breast cancer (IBC) remains challenging within large healthcare systems, limiting access to specialized care. We developed and evaluated an artificial intelligence-driven platform integrating natural language processing (NLP) with electronic health records to systematically identify potential IBC cases across five campuses. Our platform analyzed 8,623,494 clinical notes, implementing a sequential review process: NLP screening followed by human validation and multidisciplinary confirmation. Initial NLP screening achieved 55.4% positive predictive value, improving to 78.4% with human-in-the-loop review. Notably, among 255 confirmed IBC cases, our system demonstrated 92.2% sensitivity, identifying 57 cases (22.4%) that traditional surveillance methods missed. Documentation patterns significantly influenced system performance, with combined IBC and T4d staging mentions showing highest predictive value (98.2%). This proof-of-concept study demonstrates that lightweight NLP systems with targeted human review can identify rare cancer cases that may otherwise remain siloed within complex healthcare networks, ultimately improving access to specialized care resources.</p>\",\"PeriodicalId\":14681,\"journal\":{\"name\":\"JNCI Cancer Spectrum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JNCI Cancer Spectrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jncics/pkaf058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Cancer Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jncics/pkaf058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

炎性乳腺癌(IBC)的早期识别和转诊在大型医疗保健系统中仍然具有挑战性,限制了获得专业护理的机会。我们开发并评估了一个人工智能驱动的平台,将自然语言处理(NLP)与电子健康记录集成在一起,系统地识别五个校区的潜在IBC病例。我们的平台分析了8,623,494份临床记录,实施了顺序审查过程:NLP筛选,然后是人类验证和多学科确认。最初的NLP筛选获得了55.4%的阳性预测值,通过human-in-the-loop审查提高到78.4%。值得注意的是,在255例IBC确诊病例中,我们的系统灵敏度为92.2%,识别出57例(22.4%)传统监测方法遗漏的病例。文档模式对系统性能有显著影响,IBC和T4d分期的组合显示出最高的预测值(98.2%)。这项概念验证研究表明,具有针对性的人类审查的轻量级NLP系统可以识别罕见的癌症病例,否则这些病例可能会在复杂的医疗保健网络中保持孤立,最终改善对专业护理资源的获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of natural language processing to identify inflammatory breast cancer cases across a healthcare system.

Early identification and referral of inflammatory breast cancer (IBC) remains challenging within large healthcare systems, limiting access to specialized care. We developed and evaluated an artificial intelligence-driven platform integrating natural language processing (NLP) with electronic health records to systematically identify potential IBC cases across five campuses. Our platform analyzed 8,623,494 clinical notes, implementing a sequential review process: NLP screening followed by human validation and multidisciplinary confirmation. Initial NLP screening achieved 55.4% positive predictive value, improving to 78.4% with human-in-the-loop review. Notably, among 255 confirmed IBC cases, our system demonstrated 92.2% sensitivity, identifying 57 cases (22.4%) that traditional surveillance methods missed. Documentation patterns significantly influenced system performance, with combined IBC and T4d staging mentions showing highest predictive value (98.2%). This proof-of-concept study demonstrates that lightweight NLP systems with targeted human review can identify rare cancer cases that may otherwise remain siloed within complex healthcare networks, ultimately improving access to specialized care resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JNCI Cancer Spectrum
JNCI Cancer Spectrum Medicine-Oncology
CiteScore
7.70
自引率
0.00%
发文量
80
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信