分离的突触和非突触线粒体对Ca2+的不同处理:Ca2+缓冲和外排的作用。

IF 2.8 4区 医学 Q2 NEUROSCIENCES
Frontiers in Synaptic Neuroscience Pub Date : 2025-05-27 eCollection Date: 2025-01-01 DOI:10.3389/fnsyn.2025.1562065
Jyotsna Mishra, Kyle Bevers, Keguo Li, Armaan Zare, James S Heisner, Ailing Tong, Wai-Meng Kwok, David F Stowe, Amadou K S Camara
{"title":"分离的突触和非突触线粒体对Ca2+的不同处理:Ca2+缓冲和外排的作用。","authors":"Jyotsna Mishra, Kyle Bevers, Keguo Li, Armaan Zare, James S Heisner, Ailing Tong, Wai-Meng Kwok, David F Stowe, Amadou K S Camara","doi":"10.3389/fnsyn.2025.1562065","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria regulate intracellular calcium ion (Ca<sup>2+</sup>) signaling by a fine-tuned process of mitochondrial matrix (m) Ca<sup>2+</sup> influx, mCa<sup>2+</sup> buffering (sequestration) and mCa<sup>2+</sup> release (Ca<sup>2+</sup> efflux). This process is critically important in the neurosynaptic terminal, where there is a simultaneous high demand for ATP utilization, cytosolic (c) Ca<sup>2+</sup> regulation, and maintenance of ionic gradients across the cell membrane. Brain synaptic and non-synaptic mitochondria display marked differences in Ca<sup>2+</sup> retention capacity. We hypothesized that mitochondrial Ca<sup>2+</sup> handling in these two mitochondrial populations is determined by the net effects of Ca<sup>2+</sup> uptake, buffering or efflux with increasing CaCl<sub>2</sub> boluses. We found first that synaptic mitochondria have a more coupled respiration than non-synaptic mitochondria; this may correlate with the higher local energy demand in synapses to support neurotransmission. When both mitochondrial fractions were exposed to increasing mCa<sup>2+</sup> loads we observed decreased mCa<sup>2+</sup> sequestration in synaptic mitochondria as assessed by a significant increase in the steady-state free extra matrix Ca<sup>2+</sup> (ss[Ca<sup>2+</sup>]<sub>e</sub>) compared to non-synaptic mitochondria. Since, non-synaptic mitochondria displayed a significantly reduced ss[Ca<sup>2+</sup>]<sub>e</sub>, this suggested a larger mCa<sup>2+</sup> buffering capacity to maintain [Ca<sup>2+</sup>]<sub>m</sub> with increasing mCa<sup>2+</sup> loads. There were no differences in the magnitude of the transient depolarizations and repolarizations of the membrane potential (ΔΨ<sub>m</sub>) and both fractions exhibited similar gradual depolarization of the baseline ΔΨ<sub>m</sub> during additional CaCl<sub>2</sub> boluses. Adding the mitochondrial Na<sup>+</sup>/Ca<sup>2+</sup> exchanger (mNCE) inhibitor CGP37157 to the mitochondrial suspensions unmasked the mCa<sup>2+</sup> sequestration and concomitantly lowered ss[Ca<sup>2+</sup>]<sub>e</sub> in synaptic <i>vs</i>. non-synaptic mitochondria. Adding complex V inhibitor oligomycin plus ADP (OMN + ADP) bolstered the matrix Ca<sup>2+</sup> buffering capacity in synaptic mitochondria, as did Cyclosporin A (CsA), in non-synaptic. Our results display distinct differences in regulation of the free [Ca<sup>2+</sup>]<sub>m</sub> to prevent collapse of ΔΨ<sub>m</sub> during mCa<sup>2+</sup> overload in the two populations of mitochondria. Synaptic mitochondria appear to rely mainly on mCa<sup>2+</sup> efflux via mNCE, while non-synaptic mitochondria rely mainly on P<sub>i</sub>-dependent mCa<sup>2+</sup> sequestration. The functional implications of differential mCa<sup>2+</sup> handling at neuronal synapses may be adaptations to cope with the higher metabolic activity and larger mCa<sup>2+</sup> transients at synaptosomes, reflecting a distinct role they play in brain function.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"17 ","pages":"1562065"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential Ca<sup>2+</sup> handling by isolated synaptic and non-synaptic mitochondria: roles of Ca<sup>2+</sup> buffering and efflux.\",\"authors\":\"Jyotsna Mishra, Kyle Bevers, Keguo Li, Armaan Zare, James S Heisner, Ailing Tong, Wai-Meng Kwok, David F Stowe, Amadou K S Camara\",\"doi\":\"10.3389/fnsyn.2025.1562065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria regulate intracellular calcium ion (Ca<sup>2+</sup>) signaling by a fine-tuned process of mitochondrial matrix (m) Ca<sup>2+</sup> influx, mCa<sup>2+</sup> buffering (sequestration) and mCa<sup>2+</sup> release (Ca<sup>2+</sup> efflux). This process is critically important in the neurosynaptic terminal, where there is a simultaneous high demand for ATP utilization, cytosolic (c) Ca<sup>2+</sup> regulation, and maintenance of ionic gradients across the cell membrane. Brain synaptic and non-synaptic mitochondria display marked differences in Ca<sup>2+</sup> retention capacity. We hypothesized that mitochondrial Ca<sup>2+</sup> handling in these two mitochondrial populations is determined by the net effects of Ca<sup>2+</sup> uptake, buffering or efflux with increasing CaCl<sub>2</sub> boluses. We found first that synaptic mitochondria have a more coupled respiration than non-synaptic mitochondria; this may correlate with the higher local energy demand in synapses to support neurotransmission. When both mitochondrial fractions were exposed to increasing mCa<sup>2+</sup> loads we observed decreased mCa<sup>2+</sup> sequestration in synaptic mitochondria as assessed by a significant increase in the steady-state free extra matrix Ca<sup>2+</sup> (ss[Ca<sup>2+</sup>]<sub>e</sub>) compared to non-synaptic mitochondria. Since, non-synaptic mitochondria displayed a significantly reduced ss[Ca<sup>2+</sup>]<sub>e</sub>, this suggested a larger mCa<sup>2+</sup> buffering capacity to maintain [Ca<sup>2+</sup>]<sub>m</sub> with increasing mCa<sup>2+</sup> loads. There were no differences in the magnitude of the transient depolarizations and repolarizations of the membrane potential (ΔΨ<sub>m</sub>) and both fractions exhibited similar gradual depolarization of the baseline ΔΨ<sub>m</sub> during additional CaCl<sub>2</sub> boluses. Adding the mitochondrial Na<sup>+</sup>/Ca<sup>2+</sup> exchanger (mNCE) inhibitor CGP37157 to the mitochondrial suspensions unmasked the mCa<sup>2+</sup> sequestration and concomitantly lowered ss[Ca<sup>2+</sup>]<sub>e</sub> in synaptic <i>vs</i>. non-synaptic mitochondria. Adding complex V inhibitor oligomycin plus ADP (OMN + ADP) bolstered the matrix Ca<sup>2+</sup> buffering capacity in synaptic mitochondria, as did Cyclosporin A (CsA), in non-synaptic. Our results display distinct differences in regulation of the free [Ca<sup>2+</sup>]<sub>m</sub> to prevent collapse of ΔΨ<sub>m</sub> during mCa<sup>2+</sup> overload in the two populations of mitochondria. Synaptic mitochondria appear to rely mainly on mCa<sup>2+</sup> efflux via mNCE, while non-synaptic mitochondria rely mainly on P<sub>i</sub>-dependent mCa<sup>2+</sup> sequestration. The functional implications of differential mCa<sup>2+</sup> handling at neuronal synapses may be adaptations to cope with the higher metabolic activity and larger mCa<sup>2+</sup> transients at synaptosomes, reflecting a distinct role they play in brain function.</p>\",\"PeriodicalId\":12650,\"journal\":{\"name\":\"Frontiers in Synaptic Neuroscience\",\"volume\":\"17 \",\"pages\":\"1562065\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Synaptic Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnsyn.2025.1562065\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Synaptic Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsyn.2025.1562065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

线粒体通过线粒体基质(m) Ca2+内流、mCa2+缓冲(封存)和mCa2+释放(Ca2+外排)的微调过程调节细胞内钙离子(Ca2+)信号。这个过程在神经突触末端是至关重要的,在那里有ATP利用的同时高需求,胞质(c) Ca2+调节,以及维持跨细胞膜的离子梯度。脑突触和非突触线粒体在Ca2+保留能力方面表现出显著差异。我们假设这两个线粒体群体中的线粒体Ca2+处理是由Ca2+摄取、缓冲或外排的净效应决定的。我们首先发现突触线粒体比非突触线粒体有更多的耦合呼吸;这可能与支持神经传递的突触的局部能量需求较高有关。当两种线粒体组分暴露于增加的mCa2+负荷时,我们观察到突触线粒体中的mCa2+封存减少,这是通过与非突触线粒体相比,稳态游离额外基质Ca2+ (ss[Ca2+]e)的显着增加来评估的。由于非突触线粒体显示出显著降低的ss[Ca2+]e,这表明随着mCa2+负荷的增加,mCa2+缓冲能力更大,以维持[Ca2+]m。膜电位的瞬时去极化和再极化的幅度没有差异(ΔΨm),在额外的CaCl2剂量期间,两部分都表现出相似的基线逐渐去极化ΔΨm。将线粒体Na+/Ca2+交换(mNCE)抑制剂CGP37157添加到线粒体悬液中,揭示了mCa2+的隔离,并同时降低了突触线粒体与非突触线粒体的ss[Ca2+]e。添加复合V抑制剂寡霉素加ADP (OMN + ADP)增强了突触线粒体中基质Ca2+缓冲能力,环孢素A (CsA)在非突触线粒体中也是如此。我们的研究结果显示,在两个线粒体种群中,在mCa2+过载期间,自由[Ca2+]m的调节有明显的差异,以防止ΔΨm崩溃。突触线粒体似乎主要依赖于mCa2+通过mNCE外排,而非突触线粒体主要依赖于pi依赖的mCa2+封存。神经元突触中不同的mCa2+处理的功能含义可能是适应突触体中更高的代谢活性和更大的mCa2+瞬态,反映了它们在脑功能中发挥的独特作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Ca2+ handling by isolated synaptic and non-synaptic mitochondria: roles of Ca2+ buffering and efflux.

Mitochondria regulate intracellular calcium ion (Ca2+) signaling by a fine-tuned process of mitochondrial matrix (m) Ca2+ influx, mCa2+ buffering (sequestration) and mCa2+ release (Ca2+ efflux). This process is critically important in the neurosynaptic terminal, where there is a simultaneous high demand for ATP utilization, cytosolic (c) Ca2+ regulation, and maintenance of ionic gradients across the cell membrane. Brain synaptic and non-synaptic mitochondria display marked differences in Ca2+ retention capacity. We hypothesized that mitochondrial Ca2+ handling in these two mitochondrial populations is determined by the net effects of Ca2+ uptake, buffering or efflux with increasing CaCl2 boluses. We found first that synaptic mitochondria have a more coupled respiration than non-synaptic mitochondria; this may correlate with the higher local energy demand in synapses to support neurotransmission. When both mitochondrial fractions were exposed to increasing mCa2+ loads we observed decreased mCa2+ sequestration in synaptic mitochondria as assessed by a significant increase in the steady-state free extra matrix Ca2+ (ss[Ca2+]e) compared to non-synaptic mitochondria. Since, non-synaptic mitochondria displayed a significantly reduced ss[Ca2+]e, this suggested a larger mCa2+ buffering capacity to maintain [Ca2+]m with increasing mCa2+ loads. There were no differences in the magnitude of the transient depolarizations and repolarizations of the membrane potential (ΔΨm) and both fractions exhibited similar gradual depolarization of the baseline ΔΨm during additional CaCl2 boluses. Adding the mitochondrial Na+/Ca2+ exchanger (mNCE) inhibitor CGP37157 to the mitochondrial suspensions unmasked the mCa2+ sequestration and concomitantly lowered ss[Ca2+]e in synaptic vs. non-synaptic mitochondria. Adding complex V inhibitor oligomycin plus ADP (OMN + ADP) bolstered the matrix Ca2+ buffering capacity in synaptic mitochondria, as did Cyclosporin A (CsA), in non-synaptic. Our results display distinct differences in regulation of the free [Ca2+]m to prevent collapse of ΔΨm during mCa2+ overload in the two populations of mitochondria. Synaptic mitochondria appear to rely mainly on mCa2+ efflux via mNCE, while non-synaptic mitochondria rely mainly on Pi-dependent mCa2+ sequestration. The functional implications of differential mCa2+ handling at neuronal synapses may be adaptations to cope with the higher metabolic activity and larger mCa2+ transients at synaptosomes, reflecting a distinct role they play in brain function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
2.70%
发文量
74
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信