Sagnik Sen, Michelle Lacey, Carl Baribault, V K Chaithanya Ponnaluri, Pierre Olivier Esteve, Kenneth C Ehrlich, Mia Meletta, Sriharsa Pradhan, Melanie Ehrlich
{"title":"成肌细胞甲基组:与染色质和转录相关的多种类型。","authors":"Sagnik Sen, Michelle Lacey, Carl Baribault, V K Chaithanya Ponnaluri, Pierre Olivier Esteve, Kenneth C Ehrlich, Mia Meletta, Sriharsa Pradhan, Melanie Ehrlich","doi":"10.1080/15592294.2025.2508251","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic changes are implicated in development, repair, and physiology of postnatal skeletal muscle (SkM). We generated methylomes for human myoblasts (SkM progenitor cells) and determined myoblast differentially methylated regions (DMRs) for comparison to the epigenomics and transcriptomics of diverse cell types. Analyses were from global genomic and single-gene perspectives and included reporter gene assays. One atypical finding was the association of promoter-adjacent hypermethylation in myoblasts with transcription turn-on, but at downmodulated levels, for certain genes (<i>e.g</i>., <i>SIM2</i> and <i>TWIST1</i>). In contrast, brain-specific <i>OLIG2</i> was in repressed chromatin and silent in most cell types but linked to hypermethylated DMRs specifically in myoblasts. The <i>OLIG2</i>-linked DMRs might be needed because of the overlapping or nearby binding of myogenic differentiation protein 1 (MYOD). We found genome-wide overlap of DMRs with MYOD or CCCTC-binding factor (CTCF) binding sites in myoblasts that is consistent with the importance of MYOD, as well as CTCF, in organizing myoblast transcription-enhancing chromatin interactions. We also observed some gene upregulation correlated with a special association of regional DNA hypomethylation with H3K36me3, H3K27ac, and H3K4me1 enrichment. Our study highlights unusual relationships between epigenetics and gene expression that illustrate the interplay between DNA methylation and chromatin epigenetics in the regulation of transcription.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2508251"},"PeriodicalIF":3.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12160609/pdf/","citationCount":"0","resultStr":"{\"title\":\"The myoblast methylome: multiple types of associations with chromatin and transcription.\",\"authors\":\"Sagnik Sen, Michelle Lacey, Carl Baribault, V K Chaithanya Ponnaluri, Pierre Olivier Esteve, Kenneth C Ehrlich, Mia Meletta, Sriharsa Pradhan, Melanie Ehrlich\",\"doi\":\"10.1080/15592294.2025.2508251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic changes are implicated in development, repair, and physiology of postnatal skeletal muscle (SkM). We generated methylomes for human myoblasts (SkM progenitor cells) and determined myoblast differentially methylated regions (DMRs) for comparison to the epigenomics and transcriptomics of diverse cell types. Analyses were from global genomic and single-gene perspectives and included reporter gene assays. One atypical finding was the association of promoter-adjacent hypermethylation in myoblasts with transcription turn-on, but at downmodulated levels, for certain genes (<i>e.g</i>., <i>SIM2</i> and <i>TWIST1</i>). In contrast, brain-specific <i>OLIG2</i> was in repressed chromatin and silent in most cell types but linked to hypermethylated DMRs specifically in myoblasts. The <i>OLIG2</i>-linked DMRs might be needed because of the overlapping or nearby binding of myogenic differentiation protein 1 (MYOD). We found genome-wide overlap of DMRs with MYOD or CCCTC-binding factor (CTCF) binding sites in myoblasts that is consistent with the importance of MYOD, as well as CTCF, in organizing myoblast transcription-enhancing chromatin interactions. We also observed some gene upregulation correlated with a special association of regional DNA hypomethylation with H3K36me3, H3K27ac, and H3K4me1 enrichment. Our study highlights unusual relationships between epigenetics and gene expression that illustrate the interplay between DNA methylation and chromatin epigenetics in the regulation of transcription.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":\"20 1\",\"pages\":\"2508251\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12160609/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2025.2508251\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2508251","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The myoblast methylome: multiple types of associations with chromatin and transcription.
Epigenetic changes are implicated in development, repair, and physiology of postnatal skeletal muscle (SkM). We generated methylomes for human myoblasts (SkM progenitor cells) and determined myoblast differentially methylated regions (DMRs) for comparison to the epigenomics and transcriptomics of diverse cell types. Analyses were from global genomic and single-gene perspectives and included reporter gene assays. One atypical finding was the association of promoter-adjacent hypermethylation in myoblasts with transcription turn-on, but at downmodulated levels, for certain genes (e.g., SIM2 and TWIST1). In contrast, brain-specific OLIG2 was in repressed chromatin and silent in most cell types but linked to hypermethylated DMRs specifically in myoblasts. The OLIG2-linked DMRs might be needed because of the overlapping or nearby binding of myogenic differentiation protein 1 (MYOD). We found genome-wide overlap of DMRs with MYOD or CCCTC-binding factor (CTCF) binding sites in myoblasts that is consistent with the importance of MYOD, as well as CTCF, in organizing myoblast transcription-enhancing chromatin interactions. We also observed some gene upregulation correlated with a special association of regional DNA hypomethylation with H3K36me3, H3K27ac, and H3K4me1 enrichment. Our study highlights unusual relationships between epigenetics and gene expression that illustrate the interplay between DNA methylation and chromatin epigenetics in the regulation of transcription.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics