{"title":"用于诊断和医学图像分析的通用文本引导多模态脑MRI合成。","authors":"Yulin Wang, Honglin Xiong, Kaicong Sun, Shuwei Bai, Ling Dai, Zhongxiang Ding, Jiameng Liu, Qian Wang, Qian Liu, Dinggang Shen","doi":"10.1016/j.xcrm.2025.102182","DOIUrl":null,"url":null,"abstract":"<p><p>Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102182"},"PeriodicalIF":11.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward general text-guided multimodal brain MRI synthesis for diagnosis and medical image analysis.\",\"authors\":\"Yulin Wang, Honglin Xiong, Kaicong Sun, Shuwei Bai, Ling Dai, Zhongxiang Ding, Jiameng Liu, Qian Wang, Qian Liu, Dinggang Shen\",\"doi\":\"10.1016/j.xcrm.2025.102182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102182\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102182\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102182","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Toward general text-guided multimodal brain MRI synthesis for diagnosis and medical image analysis.
Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.