用于诊断和医学图像分析的通用文本引导多模态脑MRI合成。

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Cell Reports Medicine Pub Date : 2025-06-17 Epub Date: 2025-06-09 DOI:10.1016/j.xcrm.2025.102182
Yulin Wang, Honglin Xiong, Kaicong Sun, Shuwei Bai, Ling Dai, Zhongxiang Ding, Jiameng Liu, Qian Wang, Qian Liu, Dinggang Shen
{"title":"用于诊断和医学图像分析的通用文本引导多模态脑MRI合成。","authors":"Yulin Wang, Honglin Xiong, Kaicong Sun, Shuwei Bai, Ling Dai, Zhongxiang Ding, Jiameng Liu, Qian Wang, Qian Liu, Dinggang Shen","doi":"10.1016/j.xcrm.2025.102182","DOIUrl":null,"url":null,"abstract":"<p><p>Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102182"},"PeriodicalIF":11.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward general text-guided multimodal brain MRI synthesis for diagnosis and medical image analysis.\",\"authors\":\"Yulin Wang, Honglin Xiong, Kaicong Sun, Shuwei Bai, Ling Dai, Zhongxiang Ding, Jiameng Liu, Qian Wang, Qian Liu, Dinggang Shen\",\"doi\":\"10.1016/j.xcrm.2025.102182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102182\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102182\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102182","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多模态脑磁共振成像(MRI)提供了对大脑结构和功能的补充见解,从而提高了神经系统疾病的诊断准确性,并推进了脑相关研究。然而,MRI的广泛适用性受到扫描仪可及性的限制和采集时间的延长。在这里,我们提出了TUMSyn,这是一种文本引导的通用MRI合成模型,能够从常规获取的扫描中生成由文本成像元数据指定的脑MRI。为了确保TUMSyn的可靠性,我们构建了一个由来自全球13个中心的7种MRI模式的31,407张3D图像组成的脑MRI数据库,并预训练了一个MRI特定的文本编码器来有效地处理文本提示。在不同数据集和医生评估上的实验表明,tumsyn生成的图像可以与获得的MRI扫描一起使用,以促进基于MRI的多种脑部疾病的大规模筛查和诊断,从而大大减少医疗保健系统中MRI的时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward general text-guided multimodal brain MRI synthesis for diagnosis and medical image analysis.

Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信