{"title":"预测混沌哈密顿系统中几何相位扩散统计量的路径积分方法。","authors":"Ana Silva, Efi Efrati","doi":"10.1063/5.0271479","DOIUrl":null,"url":null,"abstract":"<p><p>From the integer quantum Hall effect to swimming at a low Reynolds number, geometric phases arise in the description of many different physical systems. In many of these systems, the temporal evolution prescribed by the geometric phase can be directly measured by an external observer. By definition, geometric phases rely on the history of the system's internal dynamics, and so their measurement is directly related to the temporal correlations in the system. They, thus, provide a sensitive tool for studying chaotic Hamiltonian systems. In this work, we present a toy model consisting of an autonomous, low-dimensional, chaotic Hamiltonian system designed to have a simple planar internal state space and a single geometric phase. The diffusive phase dynamics in the highly chaotic regime is, thus, governed by the loop statistics of planar random walks. We show that the naïve loop statistics result in ballistic behavior of the phase and recover the diffusive behavior by considering a bounded shape space or a quadratic confining potential.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path integral approach for predicting the diffusive statistics of geometric phases in chaotic Hamiltonian systems.\",\"authors\":\"Ana Silva, Efi Efrati\",\"doi\":\"10.1063/5.0271479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>From the integer quantum Hall effect to swimming at a low Reynolds number, geometric phases arise in the description of many different physical systems. In many of these systems, the temporal evolution prescribed by the geometric phase can be directly measured by an external observer. By definition, geometric phases rely on the history of the system's internal dynamics, and so their measurement is directly related to the temporal correlations in the system. They, thus, provide a sensitive tool for studying chaotic Hamiltonian systems. In this work, we present a toy model consisting of an autonomous, low-dimensional, chaotic Hamiltonian system designed to have a simple planar internal state space and a single geometric phase. The diffusive phase dynamics in the highly chaotic regime is, thus, governed by the loop statistics of planar random walks. We show that the naïve loop statistics result in ballistic behavior of the phase and recover the diffusive behavior by considering a bounded shape space or a quadratic confining potential.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0271479\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0271479","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Path integral approach for predicting the diffusive statistics of geometric phases in chaotic Hamiltonian systems.
From the integer quantum Hall effect to swimming at a low Reynolds number, geometric phases arise in the description of many different physical systems. In many of these systems, the temporal evolution prescribed by the geometric phase can be directly measured by an external observer. By definition, geometric phases rely on the history of the system's internal dynamics, and so their measurement is directly related to the temporal correlations in the system. They, thus, provide a sensitive tool for studying chaotic Hamiltonian systems. In this work, we present a toy model consisting of an autonomous, low-dimensional, chaotic Hamiltonian system designed to have a simple planar internal state space and a single geometric phase. The diffusive phase dynamics in the highly chaotic regime is, thus, governed by the loop statistics of planar random walks. We show that the naïve loop statistics result in ballistic behavior of the phase and recover the diffusive behavior by considering a bounded shape space or a quadratic confining potential.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.