预测混沌哈密顿系统中几何相位扩散统计量的路径积分方法。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0271479
Ana Silva, Efi Efrati
{"title":"预测混沌哈密顿系统中几何相位扩散统计量的路径积分方法。","authors":"Ana Silva, Efi Efrati","doi":"10.1063/5.0271479","DOIUrl":null,"url":null,"abstract":"<p><p>From the integer quantum Hall effect to swimming at a low Reynolds number, geometric phases arise in the description of many different physical systems. In many of these systems, the temporal evolution prescribed by the geometric phase can be directly measured by an external observer. By definition, geometric phases rely on the history of the system's internal dynamics, and so their measurement is directly related to the temporal correlations in the system. They, thus, provide a sensitive tool for studying chaotic Hamiltonian systems. In this work, we present a toy model consisting of an autonomous, low-dimensional, chaotic Hamiltonian system designed to have a simple planar internal state space and a single geometric phase. The diffusive phase dynamics in the highly chaotic regime is, thus, governed by the loop statistics of planar random walks. We show that the naïve loop statistics result in ballistic behavior of the phase and recover the diffusive behavior by considering a bounded shape space or a quadratic confining potential.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path integral approach for predicting the diffusive statistics of geometric phases in chaotic Hamiltonian systems.\",\"authors\":\"Ana Silva, Efi Efrati\",\"doi\":\"10.1063/5.0271479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>From the integer quantum Hall effect to swimming at a low Reynolds number, geometric phases arise in the description of many different physical systems. In many of these systems, the temporal evolution prescribed by the geometric phase can be directly measured by an external observer. By definition, geometric phases rely on the history of the system's internal dynamics, and so their measurement is directly related to the temporal correlations in the system. They, thus, provide a sensitive tool for studying chaotic Hamiltonian systems. In this work, we present a toy model consisting of an autonomous, low-dimensional, chaotic Hamiltonian system designed to have a simple planar internal state space and a single geometric phase. The diffusive phase dynamics in the highly chaotic regime is, thus, governed by the loop statistics of planar random walks. We show that the naïve loop statistics result in ballistic behavior of the phase and recover the diffusive behavior by considering a bounded shape space or a quadratic confining potential.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0271479\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0271479","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

从整数量子霍尔效应到低雷诺数游泳,几何相位出现在许多不同物理系统的描述中。在许多这样的系统中,由几何相位规定的时间演化可以由外部观察者直接测量。根据定义,几何相位依赖于系统内部动力学的历史,因此它们的测量与系统中的时间相关性直接相关。因此,它们为研究混沌哈密顿系统提供了一种灵敏的工具。在这项工作中,我们提出了一个玩具模型,由一个自治的、低维的、混沌的哈密顿系统组成,该系统被设计成具有一个简单的平面内部状态空间和一个单一的几何相位。因此,高度混沌状态下的扩散相动力学是由平面随机游动的环路统计量控制的。通过考虑有界形状空间或二次约束势,我们证明了naïve环路统计量导致了相的弹道行为,并恢复了扩散行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path integral approach for predicting the diffusive statistics of geometric phases in chaotic Hamiltonian systems.

From the integer quantum Hall effect to swimming at a low Reynolds number, geometric phases arise in the description of many different physical systems. In many of these systems, the temporal evolution prescribed by the geometric phase can be directly measured by an external observer. By definition, geometric phases rely on the history of the system's internal dynamics, and so their measurement is directly related to the temporal correlations in the system. They, thus, provide a sensitive tool for studying chaotic Hamiltonian systems. In this work, we present a toy model consisting of an autonomous, low-dimensional, chaotic Hamiltonian system designed to have a simple planar internal state space and a single geometric phase. The diffusive phase dynamics in the highly chaotic regime is, thus, governed by the loop statistics of planar random walks. We show that the naïve loop statistics result in ballistic behavior of the phase and recover the diffusive behavior by considering a bounded shape space or a quadratic confining potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信