高等植物内源和外源褪黑素的功能。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Antioxidants & redox signaling Pub Date : 2025-07-01 Epub Date: 2025-06-11 DOI:10.1089/ars.2024.0889
Francisco J Corpas, Jorge Taboada, Rosa M Rivero, Russel J Reiter, José M Palma
{"title":"高等植物内源和外源褪黑素的功能。","authors":"Francisco J Corpas, Jorge Taboada, Rosa M Rivero, Russel J Reiter, José M Palma","doi":"10.1089/ars.2024.0889","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> The role of melatonin (MEL) in plants has gained significant relevance due to its involvement in a wide range of physiological functions, particularly in response mechanisms to both abiotic and biotic stresses. <b><i>Recent Advances:</i></b> Recent progress highlights the significance of the biosynthetic pathway of MEL in plants, which surpasses that of animals. The discovery of specific plant MEL receptors has revealed new signaling mechanisms. Studies also show that applying exogenous MEL offers benefits under stress conditions and helps maintain the organoleptic qualities of fruits and vegetables during postharvest storage. <b><i>Critical Issues:</i></b> This review explores MEL's biochemistry, emphasizing its dual role as both an antioxidant and a signaling molecule. It examines how MEL interacts with phytohormones, its role in regulating the metabolism of reactive oxygen and nitrogen species, and its influence on plant growth and stress tolerance. The potential of MEL-based biotechnological applications for enhancing crop resilience and postharvest quality is also discussed. <b><i>Future Directions:</i></b> Future research should prioritize molecular mechanisms, high-throughput approaches, and translational studies to bridge the gap between fundamental science and agricultural practices. MEL's role as a sustainable solution in agriculture offers exciting possibilities for addressing global food security challenges. <i>Antioxid. Redox Signal.</i> 43, 151-188.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"151-188"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functions of Endogenously Produced and Exogenously Applied Melatonin in Higher Plants.\",\"authors\":\"Francisco J Corpas, Jorge Taboada, Rosa M Rivero, Russel J Reiter, José M Palma\",\"doi\":\"10.1089/ars.2024.0889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Significance:</i></b> The role of melatonin (MEL) in plants has gained significant relevance due to its involvement in a wide range of physiological functions, particularly in response mechanisms to both abiotic and biotic stresses. <b><i>Recent Advances:</i></b> Recent progress highlights the significance of the biosynthetic pathway of MEL in plants, which surpasses that of animals. The discovery of specific plant MEL receptors has revealed new signaling mechanisms. Studies also show that applying exogenous MEL offers benefits under stress conditions and helps maintain the organoleptic qualities of fruits and vegetables during postharvest storage. <b><i>Critical Issues:</i></b> This review explores MEL's biochemistry, emphasizing its dual role as both an antioxidant and a signaling molecule. It examines how MEL interacts with phytohormones, its role in regulating the metabolism of reactive oxygen and nitrogen species, and its influence on plant growth and stress tolerance. The potential of MEL-based biotechnological applications for enhancing crop resilience and postharvest quality is also discussed. <b><i>Future Directions:</i></b> Future research should prioritize molecular mechanisms, high-throughput approaches, and translational studies to bridge the gap between fundamental science and agricultural practices. MEL's role as a sustainable solution in agriculture offers exciting possibilities for addressing global food security challenges. <i>Antioxid. Redox Signal.</i> 43, 151-188.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"151-188\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2024.0889\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0889","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

意义:褪黑激素(MEL)在植物中的作用由于其参与广泛的生理功能,特别是对非生物和生物胁迫的反应机制而获得了重要的相关性。最近进展:最近的进展强调了MEL在植物中的生物合成途径的重要性,其重要性超过了动物。特定植物MEL受体的发现揭示了新的信号传导机制。研究还表明,在逆境条件下施用外源MEL有利于保持水果和蔬菜在采后储存期间的感官品质。关键问题:这篇综述探讨了MEL的生物化学,强调其作为抗氧化剂和信号分子的双重作用。它研究了MEL如何与植物激素相互作用,它在调节活性氧和活性氮代谢中的作用,以及它对植物生长和抗逆性的影响。本文还讨论了基于mel的生物技术在提高作物抗逆性和采后品质方面的应用潜力。未来研究方向:未来的研究应优先考虑分子机制、高通量方法和转化研究,以弥合基础科学与农业实践之间的差距。MEL作为农业可持续解决方案的作用为应对全球粮食安全挑战提供了令人兴奋的可能性。Antioxid。氧化还原信号:00000 - 00000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functions of Endogenously Produced and Exogenously Applied Melatonin in Higher Plants.

Significance: The role of melatonin (MEL) in plants has gained significant relevance due to its involvement in a wide range of physiological functions, particularly in response mechanisms to both abiotic and biotic stresses. Recent Advances: Recent progress highlights the significance of the biosynthetic pathway of MEL in plants, which surpasses that of animals. The discovery of specific plant MEL receptors has revealed new signaling mechanisms. Studies also show that applying exogenous MEL offers benefits under stress conditions and helps maintain the organoleptic qualities of fruits and vegetables during postharvest storage. Critical Issues: This review explores MEL's biochemistry, emphasizing its dual role as both an antioxidant and a signaling molecule. It examines how MEL interacts with phytohormones, its role in regulating the metabolism of reactive oxygen and nitrogen species, and its influence on plant growth and stress tolerance. The potential of MEL-based biotechnological applications for enhancing crop resilience and postharvest quality is also discussed. Future Directions: Future research should prioritize molecular mechanisms, high-throughput approaches, and translational studies to bridge the gap between fundamental science and agricultural practices. MEL's role as a sustainable solution in agriculture offers exciting possibilities for addressing global food security challenges. Antioxid. Redox Signal. 43, 151-188.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信