{"title":"在临床前模型中,通过超低剂量x射线诱导光动力疗法和金基纳米团簇靶向抑制胶质瘤","authors":"Shi Li, Shileng Chen, Yimin Li, Wenjing Sun, Junjun Li, Huaping Deng, Haizhen Ding, Zongzhang Wang, Luchao Zhu, Jun Liu, Minjie Wang, Yushuo Feng, Yuanyuan Xie, Yiru Wang, Yaqing Liu, Wenle Li, Qin Lin, Xiaobing Jiang, Hongmin Chen","doi":"10.1126/scitranslmed.adq5331","DOIUrl":null,"url":null,"abstract":"<div >The diffuse and infiltrative nature of high-grade gliomas poses ongoing challenges in treatment and management. Radiotherapy is an important glioma treatment, with a standard radiotherapy dose of 60 gray. However, high-dose radiotherapy is associated with radiation-induced side effects on normal tissue. Scintillator-mediated low-dose x-ray–induced photodynamic therapy using kilovoltage x-rays has been shown to be effective for multiple tumor types without causing damage to healthy tissue. However, x-ray–induced photodynamic therapy is yet to be explored in glioma because of the inability of the photosensitizers to cross the blood-brain barrier. Here, we present an integrated gold clustoluminogen containing protein-protected gold nanoclusters conjugated to a photosensitizer and a cell-penetrating peptide. Using intravital imaging, we showed that gold clustoluminogen crossed the intact blood-brain barrier in healthy animals and accumulated in tumors in two murine intracranial orthotopic glioma models. Gold clustoluminogen efficiently suppressed glioma growth and prolonged animal survival under ultralow-dose x-ray treatment (total 2 gray, megavoltage x-ray) using the same protocol as that used for clinical megavoltage radiotherapy. Moreover, gold clustoluminogen potently inhibited tumor growth in an orthotopic patient-derived xenograft glioma model with prolonged animal survival under ultralow-dose x-ray treatment. Gold clustoluminogen was eliminated through hepatic and renal excretion, with no observed toxicity. These results highlight new opportunities to develop clinically relevant glioma therapies with reduced side effects.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 802","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted suppression of glioma by ultralow-dose x-ray–induced photodynamic therapy and gold-based nanoclusters in preclinical models\",\"authors\":\"Shi Li, Shileng Chen, Yimin Li, Wenjing Sun, Junjun Li, Huaping Deng, Haizhen Ding, Zongzhang Wang, Luchao Zhu, Jun Liu, Minjie Wang, Yushuo Feng, Yuanyuan Xie, Yiru Wang, Yaqing Liu, Wenle Li, Qin Lin, Xiaobing Jiang, Hongmin Chen\",\"doi\":\"10.1126/scitranslmed.adq5331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The diffuse and infiltrative nature of high-grade gliomas poses ongoing challenges in treatment and management. Radiotherapy is an important glioma treatment, with a standard radiotherapy dose of 60 gray. However, high-dose radiotherapy is associated with radiation-induced side effects on normal tissue. Scintillator-mediated low-dose x-ray–induced photodynamic therapy using kilovoltage x-rays has been shown to be effective for multiple tumor types without causing damage to healthy tissue. However, x-ray–induced photodynamic therapy is yet to be explored in glioma because of the inability of the photosensitizers to cross the blood-brain barrier. Here, we present an integrated gold clustoluminogen containing protein-protected gold nanoclusters conjugated to a photosensitizer and a cell-penetrating peptide. Using intravital imaging, we showed that gold clustoluminogen crossed the intact blood-brain barrier in healthy animals and accumulated in tumors in two murine intracranial orthotopic glioma models. Gold clustoluminogen efficiently suppressed glioma growth and prolonged animal survival under ultralow-dose x-ray treatment (total 2 gray, megavoltage x-ray) using the same protocol as that used for clinical megavoltage radiotherapy. Moreover, gold clustoluminogen potently inhibited tumor growth in an orthotopic patient-derived xenograft glioma model with prolonged animal survival under ultralow-dose x-ray treatment. Gold clustoluminogen was eliminated through hepatic and renal excretion, with no observed toxicity. These results highlight new opportunities to develop clinically relevant glioma therapies with reduced side effects.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"17 802\",\"pages\":\"\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.adq5331\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adq5331","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Targeted suppression of glioma by ultralow-dose x-ray–induced photodynamic therapy and gold-based nanoclusters in preclinical models
The diffuse and infiltrative nature of high-grade gliomas poses ongoing challenges in treatment and management. Radiotherapy is an important glioma treatment, with a standard radiotherapy dose of 60 gray. However, high-dose radiotherapy is associated with radiation-induced side effects on normal tissue. Scintillator-mediated low-dose x-ray–induced photodynamic therapy using kilovoltage x-rays has been shown to be effective for multiple tumor types without causing damage to healthy tissue. However, x-ray–induced photodynamic therapy is yet to be explored in glioma because of the inability of the photosensitizers to cross the blood-brain barrier. Here, we present an integrated gold clustoluminogen containing protein-protected gold nanoclusters conjugated to a photosensitizer and a cell-penetrating peptide. Using intravital imaging, we showed that gold clustoluminogen crossed the intact blood-brain barrier in healthy animals and accumulated in tumors in two murine intracranial orthotopic glioma models. Gold clustoluminogen efficiently suppressed glioma growth and prolonged animal survival under ultralow-dose x-ray treatment (total 2 gray, megavoltage x-ray) using the same protocol as that used for clinical megavoltage radiotherapy. Moreover, gold clustoluminogen potently inhibited tumor growth in an orthotopic patient-derived xenograft glioma model with prolonged animal survival under ultralow-dose x-ray treatment. Gold clustoluminogen was eliminated through hepatic and renal excretion, with no observed toxicity. These results highlight new opportunities to develop clinically relevant glioma therapies with reduced side effects.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.