材料性能预测的大型语言模型:弹性常数张量预测和材料设计

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyu Liu, Tongqi Wen, Beilin Ye, Zhuoyuan Li, Han Liu, Yang Ren and David J. Srolovitz
{"title":"材料性能预测的大型语言模型:弹性常数张量预测和材料设计","authors":"Siyu Liu, Tongqi Wen, Beilin Ye, Zhuoyuan Li, Han Liu, Yang Ren and David J. Srolovitz","doi":"10.1039/D5DD00061K","DOIUrl":null,"url":null,"abstract":"<p >Efficient and accurate prediction of material properties is critical for advancing materials design and applications. Leveraging the rapid progress of large language models (LLMs), we introduce ElaTBot, a domain-specific LLM for predicting elastic constant tensors and enabling materials discovery as a case study. The proposed ElaTBot LLM enables simultaneous prediction of elastic constant tensors, bulk modulus at finite temperatures, and the generation of new materials with targeted properties. Integrating general LLMs (GPT-4o) and Retrieval-Augmented Generation (RAG) further enhances its predictive capabilities. A specialized variant, ElaTBot-DFT, designed for 0 K elastic constant tensor prediction, reduces the prediction errors by 33.1% compared with a domain-specific, materials science LLM (Darwin) trained on the same dataset. This natural language-based approach highlights the broader potential of LLMs for material property predictions and inverse design. Their multitask capabilities lay the foundation for multimodal materials design, enabling more integrated and versatile exploration of material systems.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1625-1638"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00061k?page=search","citationCount":"0","resultStr":"{\"title\":\"Large language models for material property predictions: elastic constant tensor prediction and materials design†\",\"authors\":\"Siyu Liu, Tongqi Wen, Beilin Ye, Zhuoyuan Li, Han Liu, Yang Ren and David J. Srolovitz\",\"doi\":\"10.1039/D5DD00061K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Efficient and accurate prediction of material properties is critical for advancing materials design and applications. Leveraging the rapid progress of large language models (LLMs), we introduce ElaTBot, a domain-specific LLM for predicting elastic constant tensors and enabling materials discovery as a case study. The proposed ElaTBot LLM enables simultaneous prediction of elastic constant tensors, bulk modulus at finite temperatures, and the generation of new materials with targeted properties. Integrating general LLMs (GPT-4o) and Retrieval-Augmented Generation (RAG) further enhances its predictive capabilities. A specialized variant, ElaTBot-DFT, designed for 0 K elastic constant tensor prediction, reduces the prediction errors by 33.1% compared with a domain-specific, materials science LLM (Darwin) trained on the same dataset. This natural language-based approach highlights the broader potential of LLMs for material property predictions and inverse design. Their multitask capabilities lay the foundation for multimodal materials design, enabling more integrated and versatile exploration of material systems.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 6\",\"pages\":\" 1625-1638\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00061k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00061k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00061k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效、准确的材料性能预测是推进材料设计和应用的关键。利用大型语言模型(LLM)的快速发展,我们介绍了ElaTBot,一个用于预测弹性常数张量和实现材料发现的领域特定LLM作为案例研究。ElaTBot LLM可以同时预测弹性常数张量、有限温度下的体积模量,并生成具有目标性能的新材料。整合通用LLMs (gpt - 40)和检索增强生成(RAG)进一步增强了其预测能力。一个专门的变体,ElaTBot-DFT,设计用于0 K弹性常数张量预测,与在相同数据集上训练的特定领域的材料科学LLM (Darwin)相比,预测误差减少了33.1%。这种基于自然语言的方法突出了llm在材料性能预测和逆向设计方面的更广泛潜力。它们的多任务能力为多模态材料设计奠定了基础,使材料系统的探索更加集成和通用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large language models for material property predictions: elastic constant tensor prediction and materials design†

Large language models for material property predictions: elastic constant tensor prediction and materials design†

Efficient and accurate prediction of material properties is critical for advancing materials design and applications. Leveraging the rapid progress of large language models (LLMs), we introduce ElaTBot, a domain-specific LLM for predicting elastic constant tensors and enabling materials discovery as a case study. The proposed ElaTBot LLM enables simultaneous prediction of elastic constant tensors, bulk modulus at finite temperatures, and the generation of new materials with targeted properties. Integrating general LLMs (GPT-4o) and Retrieval-Augmented Generation (RAG) further enhances its predictive capabilities. A specialized variant, ElaTBot-DFT, designed for 0 K elastic constant tensor prediction, reduces the prediction errors by 33.1% compared with a domain-specific, materials science LLM (Darwin) trained on the same dataset. This natural language-based approach highlights the broader potential of LLMs for material property predictions and inverse design. Their multitask capabilities lay the foundation for multimodal materials design, enabling more integrated and versatile exploration of material systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信