大型化学语言模型的性质预测和高通量筛选离子液体†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuxin Qiu, Zhen Song, Guzhong Chen, Wenyao Chen, Long Chen, Kake Zhu, Zhiwen Qi, Xuezhi Duan and De Chen
{"title":"大型化学语言模型的性质预测和高通量筛选离子液体†","authors":"Yuxin Qiu, Zhen Song, Guzhong Chen, Wenyao Chen, Long Chen, Kake Zhu, Zhiwen Qi, Xuezhi Duan and De Chen","doi":"10.1039/D5DD00035A","DOIUrl":null,"url":null,"abstract":"<p >Ionic liquids (ILs) possess unique physicochemical properties and exceptional tunability, making them versatile materials for a wide range of applications. However, their immense design flexibility also poses significant challenges in efficiently identifying outstanding ILs for specific tasks within the vast chemical space. In this study, we introduce ILBERT, a large-scale chemical language model designed to predict twelve key physicochemical and thermodynamic properties of ILs. By leveraging pre-training on over 31 million unlabeled IL-like molecules and employing data augmentation techniques, ILBERT achieves superior performance compared to existing machine learning methods across all twelve benchmark datasets. As a case study, we highlight ILBERT's ability to screen ILs as potential electrolytes from a database of 8 333 096 synthetically feasible ILs, demonstrating its reliability and computational efficiency. With its robust performance, ILBERT serves as a powerful tool for guiding the rational discovery of ILs, driving innovation in their practical applications.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1505-1517"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00035a?page=search","citationCount":"0","resultStr":"{\"title\":\"Large chemical language models for property prediction and high-throughput screening of ionic liquids†\",\"authors\":\"Yuxin Qiu, Zhen Song, Guzhong Chen, Wenyao Chen, Long Chen, Kake Zhu, Zhiwen Qi, Xuezhi Duan and De Chen\",\"doi\":\"10.1039/D5DD00035A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ionic liquids (ILs) possess unique physicochemical properties and exceptional tunability, making them versatile materials for a wide range of applications. However, their immense design flexibility also poses significant challenges in efficiently identifying outstanding ILs for specific tasks within the vast chemical space. In this study, we introduce ILBERT, a large-scale chemical language model designed to predict twelve key physicochemical and thermodynamic properties of ILs. By leveraging pre-training on over 31 million unlabeled IL-like molecules and employing data augmentation techniques, ILBERT achieves superior performance compared to existing machine learning methods across all twelve benchmark datasets. As a case study, we highlight ILBERT's ability to screen ILs as potential electrolytes from a database of 8 333 096 synthetically feasible ILs, demonstrating its reliability and computational efficiency. With its robust performance, ILBERT serves as a powerful tool for guiding the rational discovery of ILs, driving innovation in their practical applications.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 6\",\"pages\":\" 1505-1517\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00035a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00035a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00035a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子液体(ILs)具有独特的物理化学性质和特殊的可调性,使其成为广泛应用的通用材料。然而,它们巨大的设计灵活性也为在广阔的化学空间中有效地识别特定任务的优秀il提出了重大挑战。在这项研究中,我们引入了ILBERT,一个大规模的化学语言模型,旨在预测il的12个关键的物理化学和热力学性质。通过对超过3100万个未标记的类il分子进行预训练,并采用数据增强技术,ILBERT在所有12个基准数据集上实现了比现有机器学习方法更优越的性能。作为案例研究,我们强调了ILBERT从8 333 096个综合可行的il数据库中筛选il作为潜在电解质的能力,证明了它的可靠性和计算效率。凭借其强大的性能,ILBERT可以作为一个强大的工具来指导il的理性发现,推动其在实际应用中的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large chemical language models for property prediction and high-throughput screening of ionic liquids†

Large chemical language models for property prediction and high-throughput screening of ionic liquids†

Ionic liquids (ILs) possess unique physicochemical properties and exceptional tunability, making them versatile materials for a wide range of applications. However, their immense design flexibility also poses significant challenges in efficiently identifying outstanding ILs for specific tasks within the vast chemical space. In this study, we introduce ILBERT, a large-scale chemical language model designed to predict twelve key physicochemical and thermodynamic properties of ILs. By leveraging pre-training on over 31 million unlabeled IL-like molecules and employing data augmentation techniques, ILBERT achieves superior performance compared to existing machine learning methods across all twelve benchmark datasets. As a case study, we highlight ILBERT's ability to screen ILs as potential electrolytes from a database of 8 333 096 synthetically feasible ILs, demonstrating its reliability and computational efficiency. With its robust performance, ILBERT serves as a powerful tool for guiding the rational discovery of ILs, driving innovation in their practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信