面向情感的跨模态提示和对齐以人为中心的情感视频字幕

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yu Wang;Yuanyuan Liu;Shunping Zhou;Yuxuan Huang;Chang Tang;Wujie Zhou;Zhe Chen
{"title":"面向情感的跨模态提示和对齐以人为中心的情感视频字幕","authors":"Yu Wang;Yuanyuan Liu;Shunping Zhou;Yuxuan Huang;Chang Tang;Wujie Zhou;Zhe Chen","doi":"10.1109/TMM.2025.3535292","DOIUrl":null,"url":null,"abstract":"Human-centric Emotional Video Captioning (H-EVC) aims to generate fine-grained, emotion-related sentences for human-based videos, enhancing the understanding of human emotions and facilitating human-computer emotional interaction. However, existing video captioning methods often overlook subtle emotional clues and interactions in videos. As a result, the generated captions frequently lack emotional information. To address this, we propose <bold>E</b>motion-oriented <bold>C</b>ross-modal <bold>P</b>rompting and <bold>A</b>lignment (ECPA), which improves HEVC accuracy by modeling fine-grained visual-textual emotion clues. Using large foundation models, ECPA introduces two learnable prompting strategies: visual emotion prompting (VEP) and textual emotion prompting (TEP), along with an emotion-oriented cross-modal alignment (ECA) module. VEP uses two levels of visual prompts, <italic>i.e.</i>, emotion recognition (ER) and action unit (AU), to focus on both coarse and fine visual emotional features. TEP devise two-level learnable textual prompts, <italic>i.e.</i>, sentence-level emotional tokens and word-level masked tokens to capture global and local textual emotion representations. ECA introduces another two levels of emotion-oriented prompt alignment learning mechanisms: the ER-sentence level and the AU-word level alignment losses. Both enhance the model's ability to capture and integrate both global and local cross-modal emotion semantics, thereby enabling the generation of fine-grained emotional linguistic descriptions in video captioning. Experiments show ECPA significantly outperforms state-of-the-art methods on various H-EVC datasets (relative improvements of 9.98%, 5.72%, 4.46%, 24.52% on MAFW, and 12.82%, 20.27%, 4.22%, 5.01% on EmVidCap across four evaluation metrics) and supports zero-shot tasks on MSVD and MSRVTT, demonstrating strong applicability and generalization.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"3766-3780"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotion-Oriented Cross-Modal Prompting and Alignment for Human-Centric Emotional Video Captioning\",\"authors\":\"Yu Wang;Yuanyuan Liu;Shunping Zhou;Yuxuan Huang;Chang Tang;Wujie Zhou;Zhe Chen\",\"doi\":\"10.1109/TMM.2025.3535292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-centric Emotional Video Captioning (H-EVC) aims to generate fine-grained, emotion-related sentences for human-based videos, enhancing the understanding of human emotions and facilitating human-computer emotional interaction. However, existing video captioning methods often overlook subtle emotional clues and interactions in videos. As a result, the generated captions frequently lack emotional information. To address this, we propose <bold>E</b>motion-oriented <bold>C</b>ross-modal <bold>P</b>rompting and <bold>A</b>lignment (ECPA), which improves HEVC accuracy by modeling fine-grained visual-textual emotion clues. Using large foundation models, ECPA introduces two learnable prompting strategies: visual emotion prompting (VEP) and textual emotion prompting (TEP), along with an emotion-oriented cross-modal alignment (ECA) module. VEP uses two levels of visual prompts, <italic>i.e.</i>, emotion recognition (ER) and action unit (AU), to focus on both coarse and fine visual emotional features. TEP devise two-level learnable textual prompts, <italic>i.e.</i>, sentence-level emotional tokens and word-level masked tokens to capture global and local textual emotion representations. ECA introduces another two levels of emotion-oriented prompt alignment learning mechanisms: the ER-sentence level and the AU-word level alignment losses. Both enhance the model's ability to capture and integrate both global and local cross-modal emotion semantics, thereby enabling the generation of fine-grained emotional linguistic descriptions in video captioning. Experiments show ECPA significantly outperforms state-of-the-art methods on various H-EVC datasets (relative improvements of 9.98%, 5.72%, 4.46%, 24.52% on MAFW, and 12.82%, 20.27%, 4.22%, 5.01% on EmVidCap across four evaluation metrics) and supports zero-shot tasks on MSVD and MSRVTT, demonstrating strong applicability and generalization.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"3766-3780\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909571/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909571/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

以人为中心的情感视频字幕(H-EVC)旨在为基于人类的视频生成细粒度的、与情感相关的句子,增强对人类情感的理解,促进人机情感交互。然而,现有的视频字幕方法往往忽略了视频中微妙的情感线索和互动。因此,生成的字幕往往缺乏情感信息。为了解决这个问题,我们提出了面向情感的跨模态提示和对齐(ECPA),它通过建模细粒度的视觉文本情感线索来提高HEVC的准确性。利用大型基础模型,ECPA引入了两种可学习的提示策略:视觉情感提示(VEP)和文本情感提示(TEP),以及面向情感的跨模态对齐(ECA)模块。VEP使用两个层次的视觉提示,即情感识别(ER)和动作单元(AU),以关注粗糙和精细的视觉情感特征。TEP设计了两级可学习的文本提示,即句子级情感标记和单词级掩码标记,以捕获全局和局部文本情感表示。ECA引入了另外两个层次的情绪导向提示对齐学习机制:er句水平和au词水平对齐损失。两者都增强了模型捕获和集成全局和局部跨模态情感语义的能力,从而能够在视频字幕中生成细粒度的情感语言描述。实验表明,ECPA在各种H-EVC数据集上的性能显著优于现有方法(在四个评估指标上,MAFW的相对性能提高了9.98%、5.72%、4.46%、24.52%,EmVidCap的相对性能提高了12.82%、20.27%、4.22%、5.01%),并且在MSVD和MSRVTT上支持零射击任务,具有很强的适用性和泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion-Oriented Cross-Modal Prompting and Alignment for Human-Centric Emotional Video Captioning
Human-centric Emotional Video Captioning (H-EVC) aims to generate fine-grained, emotion-related sentences for human-based videos, enhancing the understanding of human emotions and facilitating human-computer emotional interaction. However, existing video captioning methods often overlook subtle emotional clues and interactions in videos. As a result, the generated captions frequently lack emotional information. To address this, we propose Emotion-oriented Cross-modal Prompting and Alignment (ECPA), which improves HEVC accuracy by modeling fine-grained visual-textual emotion clues. Using large foundation models, ECPA introduces two learnable prompting strategies: visual emotion prompting (VEP) and textual emotion prompting (TEP), along with an emotion-oriented cross-modal alignment (ECA) module. VEP uses two levels of visual prompts, i.e., emotion recognition (ER) and action unit (AU), to focus on both coarse and fine visual emotional features. TEP devise two-level learnable textual prompts, i.e., sentence-level emotional tokens and word-level masked tokens to capture global and local textual emotion representations. ECA introduces another two levels of emotion-oriented prompt alignment learning mechanisms: the ER-sentence level and the AU-word level alignment losses. Both enhance the model's ability to capture and integrate both global and local cross-modal emotion semantics, thereby enabling the generation of fine-grained emotional linguistic descriptions in video captioning. Experiments show ECPA significantly outperforms state-of-the-art methods on various H-EVC datasets (relative improvements of 9.98%, 5.72%, 4.46%, 24.52% on MAFW, and 12.82%, 20.27%, 4.22%, 5.01% on EmVidCap across four evaluation metrics) and supports zero-shot tasks on MSVD and MSRVTT, demonstrating strong applicability and generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信